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Why change the structure of data?

Logical changes:

Add or remove columns

Add constraints

Change the cardinality of a relationship
Use surrogate keys instead of natural keys

Improve performance:

e Add indices

e Precompute aggregates
e Change normalization
o



What is the problem?

WikiMedia schema revisions:
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What is the problem?

WikiMedia schema revisions:

1. e 90% require a write
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What is the problem?

Some systems can not go offline:
e Telecom, payment, airline reservation, online services

Ad-hoc solutions are insufficient:

e Fast hardware: Not scalable
e Splitting transformations: Non-transactional
e Lazy transformation: Difficult to get correct

The DBMS should provide a solution!



Support for Online Schema Changes

DBMS support:

o PostgreSQL.: Partial Instantaneous DDL
o MySQL.: Partial Online DDL
o Oracle: Parallel copy

Third party tools (for MySQL):

o pt-online-schema-change
o oak-online-alter-table
o online-schema-change



Support for Online Schema Changes

DBMS support:

o PostgreSQL.: Partial Instantaneous DDL
o MySQL.: Partial Online DDL
o Oracle: Parallel copy

Third party tools (for MySQL):

o pt-online-schema-change
o oak-online-alter-table
o online-schema-change

To what degree do these solutions work?



Benchmark: Adding a Column

Transactions per minute
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Benchmark: Creating an Index

Transactions per minute
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Complex Transformations
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e Mixed results for basic (DDL) transformations:
Columns
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Current Situation

e Mixed results for basic (DDL) transformations:
o Columns
o Indices
o Constraints
o Data transformations

e Support for complex online transformations is mostly absent:
o Change a primary key
o Splitting and merging of tables
o Changing the cardinality of a relationship

O



Contributions

e Criteria for evaluating online schema change
mechanisms in general, and for the relational
model in particular.

e A concrete benchmark based on TPC-C to:

o Compare existing solutions
o Challenge the DB community to find
solutions



Contributions

e Criteria for evaluating online schema change
mechanisms in general, and for the relational
model in particular.



Criteria for Online Transformations

We have defined criteria for:

o Functionality of OST
o Performance of OST

We define:

o |deal behaviour
o Acceptable behaviour

Based on characteristics of state of the art solutions.



Functional Criteria

A mechanism for schema transformations should:

e Allow simple and complex transformations
Provide data in new schema upon commit

Satisfy the ACID properties

Be declarative

Support online upgrading of database applications



Performance Characteristics

Impact on concurrent transactions:

e Blocking
e Aborts
e Slowdown



Performance Characteristics

Impact on concurrent transactions:

e Blocking
e Aborts
e Slowdown

Performance of schema transformations:

e No aborts
e [ime to commit



Benchmark
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Benchmark Process
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Benchmark Cases

Relation Transformations ‘

create-relation
rename-relation

remove-relation

remove-relation-sp

Create a new relation TEST.

Rename ORDER-LINE to ORDER-LINE-B. Change the stored procedures to use
ORDER-LINE-B instead of ORDER-LINE.

Copy ORDER-LINE to ORDER-LINE-B. Drop ORDER-LINE-B.

Copy ORDER-LINE to ORDER-LINE-B. Drop ORDER-LINE. Change the stored pro-
cedures to use ORDER-LINE-B instead of ORDER-LINE.

Column Transtormations

add-column
add-column-sp

add-colimn-default

add-column-default-sp

rename-column
rename-column-sp

remove-column

remove-column-sp

change-type-a

change-type-b

Create OL_TAX as NULLABLE of the same type as OL_AMOUNT.

Create OL_TAX as NULLABLE of the same type as OL_AMOUNT. Change the
stored procedures to set OL_TAX to OL_AMOUNT = 0.21 upon insertion

Create OL_TAX as NOT NULL with default value 0 of the same type as
OL_AMOUNT.

Create OL_TAX s NOT NULL with default value 0 of the same type as
OL_AMOUNT. Change the stored procedures to set OL_TAX w OL_AMOUNT =
0.21 upon insertion.

Copy column OL_AMOUNT 1o OL_AMQUNT_B. Rename column OL_AMOUNT_B
to OL_AMOUNT_C.

Rename column OL_AMOUNT to OL_AMOUNT_B. Change the stored procedures
to use OL_AMOUNT_B instead of OL_AMOUNT.

Copy OL_AMOUNT to OL_AMOUNT_B. Drop OL_AMOUNT_B.

Copy OL_AMOUNT to OL_AMOUNT_B. Drop OL_AMOUNT. Change the stored
procedures to use OL_AMOUNT_B instead of OL_AMOUNT.

Change OL_NUMBER to use a greater range of integers.

Split  OL_DIST_INFO  ito  two  columns OL_DIST_INFO_A  and
OL_DIST_INFO_B. Change the stored procedures to split the value for
OL_DIST_INFO into two parts upon insertion. and to concatenate the values
upon retrieval.

Index Transformations ‘

create-index

remove-index

Create an index on OL_I_ID.

Execute create-index-a. Drop the index created by create-index.

Constraint Transformations ‘

create-constraint
remove-constraint

create-unique

remove-unique

Create a constraint to validate that 1 < OL_NUMBER < O_OL_CNT.
Evecute create-constraint-a. Drop the constraint created by create-constraint.

Create a column OL_UL and fill this with unigue values. Add a uniqueness constraint
on OL_U.

Evecute create-unigue-a. Drop the uniqueness constraints created by create-unique.

Data Transformations

change-data

Set OL_AMOUNT to OL_AMOUNT = 2.

Complex Transformations

add-column-derived

change-primary

split-relation

join-relation

defactorize

factorize

factorize-boolean

defactorize-boolean

precom pute-aggregate

Create OL_TAX as NOT NULL and initial value OL_AMOUNT = 0.21. Change the
stored procedures to set OL_TAX w OL_AMOUNT = 0.21 upon insertion.

Add a column O_GUID with unique values. Add a column OL_O_GUID, and set its
value to the O_GUID of the order corresponding to this order line. Set (OL_O_GUID,
OL_O_NUMBER}) as the primary key. Drop OL_O_ID. OL_D_ID and OL_W_ID.
Add a column NO_O_GUID. and set its value to the O_GUID of the correspond-
ing order. Drop NO_O_ID, NO_D_ID and NO_W_ID. Set NO_0O_GUID as the pri-
mary key. Drop O_ID. Update the stored procedures to use the new structure, change
STOCK_LEVEL to select the top 20 rows ordered by O_GUID instead of the condi-
ton OL_O_ID = (ST_O_ID - 20).

Create ORDER-ORDER-LINE with columns OOL_O_ID, OOL_D_ID, OOL_W_ID,
O0L_OL_ID and OOL NUMBER. Create a column OL_ID with unique val-
ues as primary key. Insert all tuples (OL_O_ID. OL_D_ID. OL_W_ID. OL_ID,
OL_NUMBER) into ORDER_ORDER_LINE. Drop columns OL_O_ID. OL_D_ID.
OL_W_ID. OL_ID and OL_NUMBER. Update the stored procedures to use the new
structure.

Execute split-relation. Add columns OL_O_ID, OL_D_ID, OL_W_ID and
OL_NUMBER and set their values to the comesponding values in ORDER-ORDER-
LINE. Drop OL_ID. and set primary key (OL_O_ID. OL_D_ID. OL_W_ID,
OL_NUMBER). Drop relation ORDER-ORDER-LINE. Update the stored procedures
to use the original stored procedures.

Add column OL_CARRIER_ID, and set its value to O_CARRIER_ID of the corre-
sponding order. Drop column O_CARRIER_ID. Update the stored procedures to use
the new structure.

Execute defactorize. Add column O_CARRIER_ID, and set its value to
OL_CARRIER_ID for the comesponding order line where OL_NUMBER = 1. Drop
column OL_CARRIER_ID. Update the stored procedures to use the original stored
procedures.

Add boolean column O_IS_NEW and set its value to true if NEW-ORDER contains
the corresponding order, otherwise set it to false. Drop relation NEW-ORDER. Update
the stored procedures to use the new structure.

Execute factorize-boolean. Create table NEW-ORDER s original. Insert the pri-
mary key of all orders into NEW-ORDER where O_IS_NEW = true. Drop column
O_IS_NEW. Update the stored procedures to use the original stored procedures.

Add column O_TOTAL_AMOUNT and set its value to the sum of OL_AMOUNT
of the comesponding order lines.  Update the stored procedures to update
O_TOTAL_AMOUNT when inserting order lines. and to use O_TOTAL_AMOUNT
instead of computing the aggregate.



Implementation

Benchmark scripts available for:

e MySQL

e PostgreSQL

e Oracle (partially implemented)

e pt-online-schema-change (only basic cases)

Based on the HammerDB TPC-C implementation.



Conclusion

e Criteria for online schema changes:

o Clarify the problem of OST
o ldentify ideal characteristics of a solution

e \We have developed a benchmark to:
o Show the extend of the problem
o Compare performance of solutions
o Challenge the DB community to find solutions for:
m Better support for basic transformations
m Support for complex transformations



For more info

Read the paper:

e A Benchmark for Non-blocking Schema Transformations
Download the benchmark implementations:

e http://wwwhome.ewi.utwente.nl/~weversl2/?page=ost

ADBIS 2015 paper:

e Analysis of the Blocking Behaviour of Schema Transformations in
Relational Database Systems



