A Benchmark for Non-Blocking
Schema Transformations

Lesley Wevers
Menno Tammens Matthijs Hofstra
Marieke Huisman Maurice van Keulen

University of Twente
DATA 2015

Why change the structure of data?

Why change the structure of data?

Logical changes:

Add or remove columns

Add constraints

Change the cardinality of a relationship
Use surrogate keys instead of natural keys

Why change the structure of data?

Logical changes:

Add or remove columns

Add constraints

Change the cardinality of a relationship
Use surrogate keys instead of natural keys

Improve performance:

e Add indices

e Precompute aggregates
e Change normalization
o

What is the problem?

WikiMedia schema revisions:

- 10
s
-
26
s,
3 o ol ol oRLEERL RPN oA} |
1 &6 11 1&:1“:1:㡳

Source: http://yellowstone.cs.ucla.edu/schema-evolution/index.php/Schema_Evolution_Benchmark

What is the problem?

WikiMedia schema revisions:

e 90% require a write
1wl “ I.|‘| ||.|.||||‘ " i | ‘| |

lock.
| -] 11 II\IIHEIHHHEI

number of versions

2 & & & m

Source: http://yellowstone.cs.ucla.edu/schema-evolution/index.php/Schema_Evolution_Benchmark

What is the problem?

WikiMedia schema revisions:

1. e 90% require a write
E 6 lock.
!: 1l “ I.|‘| ||.|.||||H ML o Largest took 22

| -] 11 16 21 !ﬁ 31 M 41 458 5§51 hours to Complete

for wikipedia.

Source: http://yellowstone.cs.ucla.edu/schema-evolution/index.php/Schema_Evolution_Benchmark

What is the problem?

Some systems can not go offline:
e Telecom, payment, airline reservation, online services

What is the problem?

Some systems can not go offline:
e Telecom, payment, airline reservation, online services

Ad-hoc solutions are insufficient:

e Fast hardware: Not scalable
e Splitting transformations: Non-transactional
e Lazy transformation: Difficult to get correct

What is the problem?

Some systems can not go offline:
e Telecom, payment, airline reservation, online services

Ad-hoc solutions are insufficient:

e Fast hardware: Not scalable
e Splitting transformations: Non-transactional
e Lazy transformation: Difficult to get correct

The DBMS should provide a solution!

Support for Online Schema Changes

DBMS support:

o PostgreSQL.: Partial Instantaneous DDL
o MySQL.: Partial Online DDL
o Oracle: Parallel copy

Third party tools (for MySQL):

o pt-online-schema-change
o oak-online-alter-table
o online-schema-change

Support for Online Schema Changes

DBMS support:

o PostgreSQL.: Partial Instantaneous DDL
o MySQL.: Partial Online DDL
o Oracle: Parallel copy

Third party tools (for MySQL):

o pt-online-schema-change
o oak-online-alter-table
o online-schema-change

To what degree do these solutions work?

Benchmark: Adding a Column

Transactions per minute

Transactions per minute

9000

8000
7000
6000
5000
4000
3000
2000
1000

mysql

-10:00

9000

I |
0:00 6:51
Time in minutes since start

16:51

7000
6000
5000
4000}~

2000
1000

postgresqgl

-10:00

L
0:01
Time in minutes since start

10:01

Transactions per minute

Transactions per minute

4000

3500

3000

2500

2000

1500

1000

ptfon\inefschema—change

9000

I I
0:00 15:25
Time in minutes since start

7000

6000
5000
4000}~

2000
1000

postgresql

-10:00

I
0:00 1:15 11:15
Time in minutes since start

Benchmark: Creating an Index

Transactions per minute

9000 T
8000
7000
6000
5000
4000
3000
2000

1000}

postgresql

1
-10:00 0:00

4000

3500

w
(=)
o
o

2500

= = N
(=] wu o
(=] (=] [=]
o o o

Transactions per minute

500

pt-online-sc hema-c hange

L
60:46 70:46 -10:00

Time in minutes since start

Transactions per minute

9000

1
0:00

L
25:55 35:55

Time in minutes since start

8000

mysql

0:00 11:18
Time in minutes since start

21:18

Complex Transformations

9000 9000

8000 8000

Q

1]
£ 7000 £ 7000
= i=
E € 60001 N-- V-V
g 8 5000
(7] [V
i o
-9 ‘9 4000 Al el s s _
T T
g | | | B Al g 2 10]0])| St e B L P, e P L] T e i
ot c
o o
|— 2000_ ... is |_ 2000

1000_ ...] 1000 .. is

A | A
-10:00 0:00 4:53 14:53 -10:00 0:00 14:18 24:18
Time in minutes since start Time in minutes since start

No support by third party tools

Current Situation

e Mixed results for basic (DDL) transformations:
Columns

Indices

Constraints

Data transformations

O O O O

Current Situation

e Mixed results for basic (DDL) transformations:
o Columns
o Indices
o Constraints
o Data transformations

e Support for complex online transformations is mostly absent:
o Change a primary key
o Splitting and merging of tables
o Changing the cardinality of a relationship

O

Contributions

e Criteria for evaluating online schema change
mechanisms in general, and for the relational
model in particular.

e A concrete benchmark based on TPC-C to:

o Compare existing solutions
o Challenge the DB community to find
solutions

Contributions

e Criteria for evaluating online schema change
mechanisms in general, and for the relational
model in particular.

Criteria for Online Transformations

We have defined criteria for:

o Functionality of OST
o Performance of OST

We define:

o |deal behaviour
o Acceptable behaviour

Based on characteristics of state of the art solutions.

Functional Criteria

A mechanism for schema transformations should:

e Allow simple and complex transformations
Provide data in new schema upon commit

Satisfy the ACID properties

Be declarative

Support online upgrading of database applications

Performance Characteristics

Impact on concurrent transactions:

e Blocking
e Aborts
e Slowdown

Performance Characteristics

Impact on concurrent transactions:

e Blocking
e Aborts
e Slowdown

Performance of schema transformations:

e No aborts
e [ime to commit

Benchmark

TPC-C

10

Warehouse
w

100K

Stock
W*100K

3+

New-Order
W ak+

History
W*30k+
1+

0-1

Order-Line
W*300k+

Customer

New order
Payment
Order status
Delivery

Stock level

Benchmark

Warehouse
w

District
wW=+=10
3k
Customer
W*30k
1+

Order
W=*30k+

New order
Payment
Order status
Delivery

Stock level

Benchmark Process

Setup database 9000 | | mysal
Start TPC.C S
Intro period
Transform:

o Schema
o Stored procedures B 2000 e]
Outro period e e R
e Stop TPC-C e . S—— . e

w
(=
(=]
o

nsactions per minut

Benchmark Cases

Relation Transformations ‘

create-relation
rename-relation

remove-relation

remove-relation-sp

Create a new relation TEST.

Rename ORDER-LINE to ORDER-LINE-B. Change the stored procedures to use
ORDER-LINE-B instead of ORDER-LINE.

Copy ORDER-LINE to ORDER-LINE-B. Drop ORDER-LINE-B.

Copy ORDER-LINE to ORDER-LINE-B. Drop ORDER-LINE. Change the stored pro-
cedures to use ORDER-LINE-B instead of ORDER-LINE.

Column Transtormations

add-column
add-column-sp

add-colimn-default

add-column-default-sp

rename-column
rename-column-sp

remove-column

remove-column-sp

change-type-a

change-type-b

Create OL_TAX as NULLABLE of the same type as OL_AMOUNT.

Create OL_TAX as NULLABLE of the same type as OL_AMOUNT. Change the
stored procedures to set OL_TAX to OL_AMOUNT = 0.21 upon insertion

Create OL_TAX as NOT NULL with default value 0 of the same type as
OL_AMOUNT.

Create OL_TAX s NOT NULL with default value 0 of the same type as
OL_AMOUNT. Change the stored procedures to set OL_TAX w OL_AMOUNT =
0.21 upon insertion.

Copy column OL_AMOUNT 1o OL_AMQUNT_B. Rename column OL_AMOUNT_B
to OL_AMOUNT_C.

Rename column OL_AMOUNT to OL_AMOUNT_B. Change the stored procedures
to use OL_AMOUNT_B instead of OL_AMOUNT.

Copy OL_AMOUNT to OL_AMOUNT_B. Drop OL_AMOUNT_B.

Copy OL_AMOUNT to OL_AMOUNT_B. Drop OL_AMOUNT. Change the stored
procedures to use OL_AMOUNT_B instead of OL_AMOUNT.

Change OL_NUMBER to use a greater range of integers.

Split OL_DIST_INFO ito two columns OL_DIST_INFO_A and
OL_DIST_INFO_B. Change the stored procedures to split the value for
OL_DIST_INFO into two parts upon insertion. and to concatenate the values
upon retrieval.

Index Transformations ‘

create-index

remove-index

Create an index on OL_I_ID.

Execute create-index-a. Drop the index created by create-index.

Constraint Transformations ‘

create-constraint
remove-constraint

create-unique

remove-unique

Create a constraint to validate that 1 < OL_NUMBER < O_OL_CNT.
Evecute create-constraint-a. Drop the constraint created by create-constraint.

Create a column OL_UL and fill this with unigue values. Add a uniqueness constraint
on OL_U.

Evecute create-unigue-a. Drop the uniqueness constraints created by create-unique.

Data Transformations

change-data

Set OL_AMOUNT to OL_AMOUNT = 2.

Complex Transformations

add-column-derived

change-primary

split-relation

join-relation

defactorize

factorize

factorize-boolean

defactorize-boolean

precom pute-aggregate

Create OL_TAX as NOT NULL and initial value OL_AMOUNT = 0.21. Change the
stored procedures to set OL_TAX w OL_AMOUNT = 0.21 upon insertion.

Add a column O_GUID with unique values. Add a column OL_O_GUID, and set its
value to the O_GUID of the order corresponding to this order line. Set (OL_O_GUID,
OL_O_NUMBER}) as the primary key. Drop OL_O_ID. OL_D_ID and OL_W_ID.
Add a column NO_O_GUID. and set its value to the O_GUID of the correspond-
ing order. Drop NO_O_ID, NO_D_ID and NO_W_ID. Set NO_0O_GUID as the pri-
mary key. Drop O_ID. Update the stored procedures to use the new structure, change
STOCK_LEVEL to select the top 20 rows ordered by O_GUID instead of the condi-
ton OL_O_ID = (ST_O_ID - 20).

Create ORDER-ORDER-LINE with columns OOL_O_ID, OOL_D_ID, OOL_W_ID,
O0L_OL_ID and OOL NUMBER. Create a column OL_ID with unique val-
ues as primary key. Insert all tuples (OL_O_ID. OL_D_ID. OL_W_ID. OL_ID,
OL_NUMBER) into ORDER_ORDER_LINE. Drop columns OL_O_ID. OL_D_ID.
OL_W_ID. OL_ID and OL_NUMBER. Update the stored procedures to use the new
structure.

Execute split-relation. Add columns OL_O_ID, OL_D_ID, OL_W_ID and
OL_NUMBER and set their values to the comesponding values in ORDER-ORDER-
LINE. Drop OL_ID. and set primary key (OL_O_ID. OL_D_ID. OL_W_ID,
OL_NUMBER). Drop relation ORDER-ORDER-LINE. Update the stored procedures
to use the original stored procedures.

Add column OL_CARRIER_ID, and set its value to O_CARRIER_ID of the corre-
sponding order. Drop column O_CARRIER_ID. Update the stored procedures to use
the new structure.

Execute defactorize. Add column O_CARRIER_ID, and set its value to
OL_CARRIER_ID for the comesponding order line where OL_NUMBER = 1. Drop
column OL_CARRIER_ID. Update the stored procedures to use the original stored
procedures.

Add boolean column O_IS_NEW and set its value to true if NEW-ORDER contains
the corresponding order, otherwise set it to false. Drop relation NEW-ORDER. Update
the stored procedures to use the new structure.

Execute factorize-boolean. Create table NEW-ORDER s original. Insert the pri-
mary key of all orders into NEW-ORDER where O_IS_NEW = true. Drop column
O_IS_NEW. Update the stored procedures to use the original stored procedures.

Add column O_TOTAL_AMOUNT and set its value to the sum of OL_AMOUNT
of the comesponding order lines. Update the stored procedures to update
O_TOTAL_AMOUNT when inserting order lines. and to use O_TOTAL_AMOUNT
instead of computing the aggregate.

Implementation

Benchmark scripts available for:

e MySQL

e PostgreSQL

e Oracle (partially implemented)

e pt-online-schema-change (only basic cases)

Based on the HammerDB TPC-C implementation.

Conclusion

e Criteria for online schema changes:

o Clarify the problem of OST
o ldentify ideal characteristics of a solution

e \We have developed a benchmark to:
o Show the extend of the problem
o Compare performance of solutions
o Challenge the DB community to find solutions for:
m Better support for basic transformations
m Support for complex transformations

For more info

Read the paper:

e A Benchmark for Non-blocking Schema Transformations
Download the benchmark implementations:

e http://wwwhome.ewi.utwente.nl/~weversl2/?page=ost

ADBIS 2015 paper:

e Analysis of the Blocking Behaviour of Schema Transformations in
Relational Database Systems

