
Persistent Functional Languages: 
towards Functional Relational Databases

Lesley Wevers
Supervised by Marieke Huisman & Maurice van Keulen

FMT & DB, University of Twente



Persistence

Data that outlives the execution of a program:
● Websites
● Information Systems
● Operating Systems
● Version Control Systems
● ...



Serialization to files on disk
Ad-hoc queries?
Schema transformations?
Concurrent operations?
...



Database Management Systems
Ad-hoc queries
Schema transformations
Concurrent operations
Share data between 
programs
Very large states

Query Optimization
Parallelism
Data Integrity
Enforce Constraints
Replication
…



Difficulties using DBMS’s

Forces the program into the database model:
● Data model mapping
● Type mapping
Verification is difficult:
● Type checking
● Testing
● Formal verification



Weak Points of DBMS’s

Largely fixed function, e.g.:
● Fixed data model
● Fixed data types
● Fixed index types
DBMS’s can’t really optimize database updates
● Database program execution is not under 

the control of the DBMS.



Persistent Languages

Ideal solution: Integrate a programming 
language with the features of a DBMS.

Not much success so far:
● Incompatible semantic models
● Optimization is a problem



Functional Persistent Languages

XQuery shows that functional languages are:
● Compatible with databases.
● Optimizable and parallelizable.

Using functional languages for the updating of 
databases has not really been explored.





Transactions

A transaction is a collection of operations, 
which execution satisfies the ACID properties:
● Atomicity
● Consistency
● Isolation
● Durability



Functional Transactions

type Transaction :: DB -> (DB, Result)



Functional Transaction Processing
tm :: DB -> [Transaction] -> [Result]

tm s (tx:txs) =

let (ns, r) = tx(s) in 

r : (tm ns txs)



Functional Transaction Processing

data Maybe a = Just a | Nothing

incr s = (s+1, Nothing)

read s = (s, Just s)

> tm 0 [incr, incr, read] [Nothing,
Nothing,Just 2]



Functional States
data Tree k v

  = Branch k (Tree k v) (Tree k v)

  | Leaf k vBranch 
“bob”

Branch 
“alice”

Leaf 
“alice” 
100

Leaf
“bob”

50

Branch 
“eve”

Leaf
“eve”

25

Leaf
“dan”

25



Functional Updates

Branch 
“bob”

Branch 
“alice”

Leaf 
“alice” 
100

Leaf
“bob”

50

Branch 
“eve”

Leaf
“eve”

25

Leaf
“dan”

25

Branch 
“bob”

Branch 
“eve”

Leaf
“eve”

50



Persistence

Simple persistence model:
● Journal transaction before executing.
● Recover state from latest snapshot by 

replaying journaled transactions from the 
initial state.

● Snapshot the state to clear the journal.



Constraints and Aborts

Enforce a constraint check : DB -> Bool 
over the state:

let (ns, r) = tx(s) in
  if check(ns) then (ns, r) else (s, Error)

Abort by returning the original state.



Transactions

This model satisfied the ACID properties:
● Atomic
● Consistent
● Isolated
● Durable

But how do we execute transactions in parallel?





Concurrent Transaction Execution

Idea: Evaluate states lazily.

update s = (map f s, Nothing)

contains k s = (s, contains k s)

tm (Branch ...) [contains a, update, 
contains b, ...]



Concurrent Transaction Processing

tm (Branch ...) [contains a, update, contains b, ...]



Concurrent Transaction Processing

tm 

Branch [contains a, update, contains b, ...]

Branch

Leaf Leaf

Branch

Leaf Leaf



Concurrent Transaction Processing

Branch

Branch

Leaf Leaf

Branch

Leaf Leaf

[update, contains b, ...]

Cons

contains a tm



Concurrent Transaction Processing

Branch

Branch

Leaf Leaf

Branch

Leaf Leaf

[contains b, ...]

Cons

contains a

tm

Cons

Nothing

map f



Concurrent Transaction Processing

Branch

Branch

Leaf Leaf

Branch

Leaf Leaf

contains b

Cons

contains a

Cons

Cons

Nothing

map f

tm

[...]



Concurrent Transaction Processing

Branch

Branch

Leaf Leaf

Branch

Leaf Leaf

contains b

Cons

contains a

Cons

Cons

Nothing

tm

[...]

map f map f

Branch



Concurrent Transaction Processing

Branch

Branch

Leaf Leaf

Branch

Leaf Leaf

contains b

Cons

contains a

Cons

Cons

Nothing

tm

[...]

map f map f

Branch



Concurrent Transaction Processing

Branch

Branch

Leaf Leaf

Branch

Leaf Leaf

contains b

Cons

contains a

Cons

Cons

Nothing

tm

[...]

map f

map f

Branch

Branch

map f



Concurrent Transaction Processing

Branch

Branch

Leaf Leaf

Branch

Leaf Leaf

contains b

Cons

contains a

Cons

Cons

Nothing

tm

[...]

map f

map f

Branch

Branch

map f



Concurrent Transaction Processing

Branch

Branch

Leaf Leaf

Branch

Leaf Leaf

contains b

Cons

contains a

Cons

Cons

Nothing

tm

[...]

map f

map f

Branch

Branch

Leaf



Concurrent Transaction Processing

Branch

Branch

Leaf Leaf

Branch

Leaf Leaf

True

Cons

contains a

Cons

Cons

Nothing

tm

[...]

map f

map f

Branch

Branch

Leaf



Limitations of lazy evaluation

● Concurrency is limited by data dependencies
e.g. if c then a else b
can not be evaluated until c is evaluated

● Transaction functions must be total
● Memory requirements



Future work: Memoization

Remember results of function applications:
● Optimistic execution & retrying transactions
● Aggregate functions:

● sum, min, max, …
● constraint checks

● Materialized views





Persistent Functional Languages

ACID-State for Haskell implements many of 
these ideas, however:
● There are no ad-hoc transactions:

○ We can’t do schema changes on the fly
○ We can’t share the state with other programs

● GHC not optimized for this use case
○ State is limited to main memory
○ Task scheduling not optimized for latency



Persistent Functional Language

Goals:
● Functional transaction processing 
● Ad-hoc transactions
● Stored transactions (domain specific API)



Binding Model

The state consists of a set of bindings.

A transaction can atomically:
● Create, update and delete bindings
● Evaluate an expression in the current state



Persistent Functional Language

Demo



Conclusions
We have seen:
● Functional languages for transaction processing
● Persistent functional languages

Future work:
● Optimistic concurrency control & Memoization
● Online Schema Changes
● Modelling relational databases
● Verification of constraints



Functional Persistent Languages

New possibilities:
● New methods of concurrency control
● Verification of database software



Concurrent Transaction Execution

Latency > Throughput
Concurrency > Parallelism
Transactions should be able to make progress.
Avoid transactions blocking each other.
Blocking: Heavy computations, IO



Functional States
We model states using algebraic data types, e.g.:
data List a
  = Cons a (List a)
  | Nil

data Tree k v
  = Branch k (Tree k v) (Tree k v)
  |  Leaf k v



Combined Approach
var state = new AtomicReference(initial_state)

def execute(tx : S -> (S, R, R)) : R = {

var ns, r, f

do {

val s = state.get()

(ns, r, f) = tx(s)

reduce(f)

} while(!state.compareAndSet(s, ns))

return r

}



Application:
Online Schema Transformations

Current database systems can only do schema 
transformations offline.

We want to perform schema changes lazily



Future Work:
Modelling Relational Databases

Model: relations, relational operations, indices, 
constraints, …
Querying using list comprehensions
Specifying updates conveniently
Concurrent updates
Typing relational operations



Future Work:
Verifying Database Software

Runtime constraint verification to eliminate 
runtime checks.

 Example?



Future Work: Optimistic Execution
var state = new AtomicReference(initial_state)

def execute(tx : S -> (S, R, F)) : R = {

var ns, r, f

do {

val s = state.get()

(ns, r, f) = tx(s)

reduce(f)

} while(!state.compareAndSet(s, ns))

return r

}


