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Persistence

Data that outlives the execution of a program:
● Websites
● Information Systems
● Operating Systems
● Version Control Systems
● ...



Serialization to files on disk
Ad-hoc queries?
Schema transformations?
Concurrent operations?
...



Database Management Systems
Ad-hoc queries
Schema transformations
Concurrent operations
Share data between 
programs
Very large states

Query Optimization
Parallelism
Data Integrity
Enforce Constraints
Replication
…



Difficulties using DBMS’s

Forces the program into the database model:
● Data model mapping
● Type mapping
Verification is difficult:
● Type checking
● Testing
● Formal verification



Weak Points of DBMS’s

Largely fixed function, e.g.:
● Fixed data model
● Fixed data types
● Fixed index types
DBMS’s can’t really optimize database updates
● Database program execution is not under 

the control of the DBMS.



Persistent Languages

Ideal solution: Integrate a programming 
language with the features of a DBMS.

Not much success so far:
● Incompatible semantic models
● Optimization is a problem



Functional Persistent Languages

XQuery shows that functional languages are:
● Compatible with databases.
● Optimizable and parallelizable.

Using functional languages for the updating of 
databases has not really been explored.





Transactions

A transaction is a collection of operations, 
which execution satisfies the ACID properties:
● Atomicity
● Consistency
● Isolation
● Durability



Functional Transactions

type Transaction :: DB -> (DB, Result)



Functional Transaction Processing
tm :: DB -> [Transaction] -> [Result]

tm s (tx:txs) =

let (ns, r) = tx(s) in 

r : (tm ns txs)



Functional Transaction Processing

data Maybe a = Just a | Nothing

incr s = (s+1, Nothing)

read s = (s, Just s)

> tm 0 [incr, incr, read] [Nothing,
Nothing,Just 2]



Functional States
data Tree k v
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Functional Updates
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Persistence

Simple persistence model:
● Journal transaction before executing.
● Recover state from latest snapshot by 

replaying journaled transactions from the 
initial state.

● Snapshot the state to clear the journal.



Constraints and Aborts

Enforce a constraint check : DB -> Bool 
over the state:

let (ns, r) = tx(s) in
  if check(ns) then (ns, r) else (s, Error)

Abort by returning the original state.



Transactions

This model satisfied the ACID properties:
● Atomic
● Consistent
● Isolated
● Durable

But how do we execute transactions in parallel?





Concurrent Transaction Execution

Idea: Evaluate states lazily.

update s = (map f s, Nothing)

contains k s = (s, contains k s)

tm (Branch ...) [contains a, update, 
contains b, ...]



Concurrent Transaction Processing

tm (Branch ...) [contains a, update, contains b, ...]



Concurrent Transaction Processing

tm 
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Branch

Leaf Leaf

Branch

Leaf Leaf



Concurrent Transaction Processing
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Concurrent Transaction Processing
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Limitations of lazy evaluation

● Concurrency is limited by data dependencies
e.g. if c then a else b
can not be evaluated until c is evaluated

● Transaction functions must be total
● Memory requirements



Future work: Memoization

Remember results of function applications:
● Optimistic execution & retrying transactions
● Aggregate functions:

● sum, min, max, …
● constraint checks

● Materialized views





Persistent Functional Languages

ACID-State for Haskell implements many of 
these ideas, however:
● There are no ad-hoc transactions:

○ We can’t do schema changes on the fly
○ We can’t share the state with other programs

● GHC not optimized for this use case
○ State is limited to main memory
○ Task scheduling not optimized for latency



Persistent Functional Language

Goals:
● Functional transaction processing 
● Ad-hoc transactions
● Stored transactions (domain specific API)



Binding Model

The state consists of a set of bindings.

A transaction can atomically:
● Create, update and delete bindings
● Evaluate an expression in the current state



Persistent Functional Language

Demo



Conclusions
We have seen:
● Functional languages for transaction processing
● Persistent functional languages

Future work:
● Optimistic concurrency control & Memoization
● Online Schema Changes
● Modelling relational databases
● Verification of constraints



Functional Persistent Languages

New possibilities:
● New methods of concurrency control
● Verification of database software



Concurrent Transaction Execution

Latency > Throughput
Concurrency > Parallelism
Transactions should be able to make progress.
Avoid transactions blocking each other.
Blocking: Heavy computations, IO



Functional States
We model states using algebraic data types, e.g.:
data List a
  = Cons a (List a)
  | Nil

data Tree k v
  = Branch k (Tree k v) (Tree k v)
  |  Leaf k v



Combined Approach
var state = new AtomicReference(initial_state)

def execute(tx : S -> (S, R, R)) : R = {

var ns, r, f

do {

val s = state.get()

(ns, r, f) = tx(s)

reduce(f)

} while(!state.compareAndSet(s, ns))

return r

}



Application:
Online Schema Transformations

Current database systems can only do schema 
transformations offline.

We want to perform schema changes lazily



Future Work:
Modelling Relational Databases

Model: relations, relational operations, indices, 
constraints, …
Querying using list comprehensions
Specifying updates conveniently
Concurrent updates
Typing relational operations



Future Work:
Verifying Database Software

Runtime constraint verification to eliminate 
runtime checks.

 Example?



Future Work: Optimistic Execution
var state = new AtomicReference(initial_state)

def execute(tx : S -> (S, R, F)) : R = {

var ns, r, f

do {

val s = state.get()

(ns, r, f) = tx(s)

reduce(f)

} while(!state.compareAndSet(s, ns))

return r

}


