Optimizing Transaction Execution
in a Purely Functional Database

Towards Database Maintenance without Downtime

Lesley Wevers
University of Twente



Database maintenance downtime

G'{ﬂ i ' Sorry... account maintenance underway B LAC KBOA R D N EWS

In preparation for the new semester, we will be

We're currently performing maintenance on your account. You won't be able pe rforming a Blackboard service u pdate.
to log in while maintenance is underway, but your account data and

messages are safe. Unfortunately, we can't predict exactly how long this wiill
take.

Blackboard will be down Saturday,

If this maintenance lasts more than 24 hours, please contact us at gmail- January 19th from 6:30 a.m. until 1:00 pP.m.
maintenance@google.com.




Example: Changing a database table

name postal num postal_alpha
Alice 6382 ZB
Bob 9832 KW
s

name postal

Alice 6382 ZB

Bob 9832 KW

Eve 63729




Ideally, in SQL we do the following:

BEGIN TRANSACTION;

ALTER TABLE users ADD COLUMN postal;

UPDATE users SET postal = postal num + % % + postal alpha;
ALTER TABLE users DROP COLUMN postal num;

ALTER TABLE users DROP COLUMN postal alpha;

UPDATE STORED PROCEDURE create user

UPDATE STORED PROCEDURE get user details

COMMIT;



Transactions

A transaction declaratively guarantees:

e Atomicity
e Consistency

e [solation
o Serializability
o Recoverability

e Durability (for persistent systems)






Source of the downtime problem

Transactions can be aborted at any time:

e By choice of the client
e Due to concurrency conflicts
e Hardware failures

Recoverability:

e A client may not commit if it has read any data of an
uncommitted transaction.



Our approach

e Send database programs to the database.

e A program can commit before it is executed.

e Optimize transaction execution to avoid or
minimize downtime using technigues from
functional languages.



Functional Transactions

Transaction :
DB -> (DB, Result)

Transaction manager:
DR -> [Transaction] -> [Result]



Example

data User = User String String Integer
type DB = [User]

add _user :: User -> DB -> (DB, ())
add user u db = (u : db, ())

count_users :: DB -> (DB, Boolean)
count_users db = (db, length db)



Database states

e States are constructed from bulk data types, and can
implement many kinds of data models.

e (Copies can be created cheaply through sharing
o Updates create new versions of the database
o Reads have a stable snapshot
o Allows experimenting with changes



Lazy evaluation of database states

Uses

e Postpone computing parts of database updates
e Effects of updates can be visible immediately
e Don’t do unnecessary work in queries

Limitations

e Blocks when there are data dependencies
e Transactions can not abort
e Memory requirements



Memoization

Uses

e Keep views up to date cheaply
e Share work between transactions
e Reduce cost of retrying failed transactions

Limitations

e Only works for divide-and-conquer functions
e Potentially a large amount of memory is required



Persistent Functional Language

System featuring a persistent state that can
be accessed through functional transactions,
and that can be used to:

e Implement database management systems
e Implement database programs
e Ad-hoc query and update databases



Persistent Functional Language

A state consists of a set of named bindings, e.g.:
users = [Yalice”, “bob”]
length = \list -> ..

Transactions can:

e C(Change the value of bindings in the state
e Evaluate expressions with values from the state



Example Transaction

transaction {

persistent {

\ 144

users = “eve : users’

}
length list = case
Nil -> O
Cons x xs —-> 1 + length xs

result = length users



Implementation

Type
Environment

! f

Type checker

Journal Transaction Transaction External

Manager Executor Interface

V:Iue l

Environment

v

Compiler

Persistence Graph
Manager e I Reducer




Typing Transactions

Hindley Milner + Algebraic Data Types

e Every binding in the state has a type

e Transactions can define new types:
e Persistent: Available in this and future transactions
e Non-persistent: Available only in the current transaction

e Transactions can refer to types defined in:
e The current state, e.g.: List
e The previous state, e.g.: List’

e An algebraic type definition creates constructor
functions



Changing types

Assuming the state:
data User = User String Int String
users = [User Y“alice” 6382 “zB”, ...]
We can change the structure of users:
transaction { persistent {
data User = User String String
users = map users’
(User’ n pn pa -> User n (pn + % % 4+ pa))

I
Rule: A binding in the next state may not have a type that is being overwritten



Type Checking

Type checking is performed server side

e \We can not trust the client
e The client does not have the type environment

Optimistic implementation:

e Type check on a snapshot of the type environment
e Assume types do not change during type checking
e Does not block access to the database



Ongoing and Future Work

Benchmark based on TPC-C

Language support for optimization strategies
More optimization strategies

Modelling a functional relational database



