
Optimizing Transaction Execution 
in a Purely Functional Database

Towards Database Maintenance without Downtime

Lesley Wevers
University of Twente



Database maintenance downtime



Example: Changing a database table
name postal_num postal_alpha

Alice 6382 ZB

Bob 9832 KW

name postal

Alice 6382 ZB

Bob 9832 KW

Eve 63729



Ideally, in SQL we do the following:
BEGIN TRANSACTION;

ALTER TABLE users ADD COLUMN postal;

UPDATE users SET postal = postal_num + “ “ + postal_alpha; 

ALTER TABLE users DROP COLUMN postal_num;

ALTER TABLE users DROP COLUMN postal_alpha;

UPDATE STORED PROCEDURE create_user ...

UPDATE STORED PROCEDURE get_user_details ...

COMMIT;



Transactions

A transaction declaratively guarantees:
● Atomicity
● Consistency
● Isolation

○ Serializability
○ Recoverability

● Durability (for persistent systems)



BEGIN TRANSACTION;

ALTER TABLE users ADD COLUMN postal;

UPDATE users SET postal = postal_num + “ “ + postal_alpha; 

ALTER TABLE users DROP COLUMN postal_num;

ALTER TABLE users DROP COLUMN postal_alpha;

UPDATE STORED PROCEDURE create_user ...

UPDATE STORED PROCEDURE get_user_details ...

COMMIT;



Source of the downtime problem

Transactions can be aborted at any time:
● By choice of the client 
● Due to concurrency conflicts
● Hardware failures

Recoverability: 
● A client may not commit if it has read any data of an 

uncommitted transaction.



Our approach

● Send database programs to the database.
● A program can commit before it is executed.
● Optimize transaction execution to avoid or 

minimize downtime using techniques from 
functional languages.



Functional Transactions

Transaction : 
DB -> (DB, Result)

Transaction manager: 
DB -> [Transaction] -> [Result]



Example
data User = User String String Integer

type DB = [User] 

add_user :: User -> DB -> (DB, ())

add_user u db = (u : db, ())

count_users :: DB -> (DB, Boolean)

count_users db = (db, length db)



Database states
● States are constructed from bulk data types, and can 

implement many kinds of data models.

● Copies can be created cheaply through sharing
○ Updates create new versions of the database
○ Reads have a stable snapshot
○ Allows experimenting with changes



Lazy evaluation of database states

Uses
● Postpone computing parts of database updates
● Effects of updates can be visible immediately
● Don’t do unnecessary work in queries

Limitations
● Blocks when there are data dependencies
● Transactions can not abort
● Memory requirements



Memoization

Uses
● Keep views up to date cheaply
● Share work between transactions
● Reduce cost of retrying failed transactions

Limitations
● Only works for divide-and-conquer functions
● Potentially a large amount of memory is required



Persistent Functional Language

System featuring a persistent state that can 
be accessed through functional transactions, 
and that can be used to:
● Implement database management systems
● Implement database programs
● Ad-hoc query and update databases



Persistent Functional Language
A state consists of a set of named bindings, e.g.:

users = [“alice”, “bob”]

length = \list -> …

Transactions can:
● Change the value of bindings in the state
● Evaluate expressions with values from the state



Example Transaction
transaction {

persistent {

users = “eve” : users’

}

length list = case

Nil -> 0

Cons x xs -> 1 + length xs

result = length users

}



Implementation

Graph

Transaction
ManagerJournal

Type
Environment

Graph 
Reducer

Value 
Environment

Persistence
Manager

Compiler

Type checker

Transaction 
Executor

External 
Interface



Typing Transactions

Hindley Milner + Algebraic Data Types
● Every binding in the state has a type
● Transactions can define new types:

● Persistent: Available in this and future transactions
● Non-persistent: Available only in the current transaction

● Transactions can refer to types defined in:
● The current state, e.g.: List
● The previous state, e.g.: List’

● An algebraic type definition creates constructor 
functions



Changing types
Assuming the state:

data User = User String Int String

users = [User “alice” 6382 “ZB”, ...]

We can change the structure of users:
transaction { persistent {

data User = User String String

users = map users’ 

(User’ n pn pa -> User n (pn + “ “ + pa))

} }

Rule: A binding in the next state may not have a type that is being overwritten



Type Checking

Type checking is performed server side
● We can not trust the client
● The client does not have the type environment

Optimistic implementation:
● Type check on a snapshot of the type environment
● Assume types do not change during type checking
● Does not block access to the database



Ongoing and Future Work

● Benchmark based on TPC-C
● Language support for optimization strategies
● More optimization strategies
● Modelling a functional relational database


