
A Persistent Functional Language for
Concurrent Transaction Processing

Lesley Wevers

Master’s Thesis

Department of Computer Science
University of Twente

Graduation Committee:

dr. Marieke Huisman
dr.ir. Ander de Keijzer
prof.dr. Jaco van de Pol

August 24, 2012

Abstract

In this thesis we investigate the construction of transaction processing systems using
functional programming languages. The traditional method for the construction of a
transaction processing system is to use a database management system (DBMS) to-
gether with a general purpose programming language (GPPL). However working with a
DBMS from a GPPL is difficult due to the impedance mismatch, and this model limits
the potential concurrency of the system as a whole. We have developed a prototype per-
sistent functional language for transaction processing that solves these problems.

In our language, states are a set of bindings from values to expressions. Transactions
may evaluate expressions in the context of the current state, and they may update the
bindings in the state. In our approach, a DBMS is implemented in our language using
bulk data structures. A transaction processing application can be implemented within
the same system, thus resolving the impedance mismatch. A domain specific interface
for the transaction processing application can be created using stored transactions. Ad-
ditionally, our systems allows ad-hoc querying and manipulation of the data through an
interactive interpreter.

Our language model can be implemented efficiently through graph reduction. Concur-
rency can be introduced through lazy reduction of states, which allows higher levels of
concurrency than existing concurrency control methods. We have implemented a graph
reducer based on template instantiation, which has been adapted to allow bindings
to be created dynamically by resolving references to supercombinators statically such
that unused bindings can be garbage collected automatically. We have implemented
a transaction manager for our language model that allows the concurrent execution of
transactions. Additionally, we introduce a novel approach to parallel graph reduction,
where we distribute work among reduction threads by randomising the reduction order
of strict function arguments, and by ensuring that reduction results are correctly shared
between reduction threads.

Further, we investigate methods for storing states in persistent memory. One method
is based on snapshotting the state of the system, allowing checkpointing of ongoing
computations. Another method is based on log-structured storage, and allows storage
of large states with low recovery times. We combine both of these approaches to allow
checkpointing of ongoing computations, storing states larger than main-memory, and
supporting low recovery times. In all of these approaches we use journaling as a method
to ensure durability of transactions. For our prototype we have implemented journaling
together with a simplified version of snapshotting that does not support checkpointing
of ongoing computations.

Finally, experiments with our graph reducer show nearly ideal relative speedup in two
example programs, without the need to explicitly annotate the programs for parallelism.
Additionally, our experiments show that lazy reduction of states may lead to long chains
of suspensions and memory leaks in the state. We propose a solution where we force the
evaluation of states, and limit the number of active transactions.

i

Acknowledgements

First, I would like to thank my supervisors: Marieke Huisman, Ander de Keijzer and
Jaco van de Pol. They have provided me the opportunity to define my own master’s
project, as well as providing me vital feedback while writing this thesis. Marieke was my
main advisor, with whom I had a SCRUM meeting almost every day. I would especially
like to thank Ander for offering up his free time to help me with this thesis after he left
the university.

I would also especially like to thank Stefan Blom who always took the time to discuss
problems, and who provided many technical suggestions of which some led to the results
in this thesis, most notably the combined approach to storing states in persistent mem-
ory. Also, I would like to thank Elmer Lastdrager with whom I had a daily coffee break,
and who provided me with many helpful suggestions.

From my group, I would like to thank Alfons Laarman and Tom van Dijk for taking
the time and helping me with the system on which I have run the experiments, and
providing insight into parallel algorithms. Also, I would like to thank Maarten de Mol
for helping me on the topic of functional programming.

Also, I would like to thank my fellow final year students with some of whom I have
shared the office: Freark van den Berg, Harold Bruintjes, Ronald Burgman, Gerjan
Stokkink, Paul Stapersma and Vincent de Bruijn. They have provided me with a nice
environment at the university, although sometimes a bit too ’gezellig’. I would also like
to thank the rest of the FMT group for nice conversations during lunch as well as the
occasional discussion.

Last but not least, I would like to thank my mother Inge, my steph-mother Sientje,
my brother Lennart and my sister Laurie for supporting me in writing this thesis and
providing a nice environment at home.

iii

Contents

1. Introduction 1
1.1. Traditional Transaction Processing Systems 1
1.2. Problems in the Traditional Model . 2
1.3. Persistent Functional Languages . 4
1.4. Our Approach . 4
1.5. Early Work and Goals . 6
1.6. Contributions . 7
1.7. Thesis Outline . 7

I. Background 9

2. Functional Programming 11
2.1. The Lambda Calculus . 11
2.2. Functional Programming . 12
2.3. Lazy and Parallel Evaluation . 14
2.4. Graph Reduction . 15
2.5. Conclusions . 16

3. Functional Transaction Processing 17
3.1. Transaction Processing . 17
3.2. A Model for Functional Transaction Processing 19
3.3. Executing Functional Transactions Efficiently 21
3.4. Executing Functional Transactions Concurrently 22
3.5. Transactional Functional Languages . 24
3.6. Conclusions . 27

II. Contributions 29

4. A Prototype Functional Transaction Processing Language 31
4.1. Expressions . 32
4.2. Transactions . 33
4.3. Stored Transactions . 35
4.4. Domain-Specific Interfaces . 36
4.5. Conclusions . 37

v

Contents

5. Graph Reduction for Transaction Processing 39
5.1. Preliminaries . 39

5.2. Template Instantiation . 40

5.3. Adaptations for Dynamic Bindings . 41

5.4. Implementation Overview . 42

5.5. Resolving Free Variables . 44

5.6. Weak Head Normal Form Reduction . 47

5.7. Normal Form Reduction . 50

5.8. Conclusions . 51

6. Parallel Graph Reduction by Randomisation and Sharing Results 53
6.1. Preliminaries . 53

6.2. Parallelism in Functional Languages . 54

6.3. Randomisation and Result Sharing . 55

6.4. Randomisation and Result Sharing for Graph Reduction 55

6.5. Result Sharing in Weak Head Normal Form Reduction 56

6.6. Randomisation in Weak Head Normal Form Reduction 59

6.7. Result Sharing and Randomisation in Normal Form Reduction 62

6.8. Conclusions . 63

7. A Transaction Manager for Transactional Functional Languages 65
7.1. Overview . 65

7.2. Executing Transactions and Stored Transaction Calls 68

7.3. Handling Concurrent Transactions . 70

7.4. Forcing Evaluation of Transactions . 72

7.5. Conclusions . 73

8. Maintaining Persistence 75
8.1. Characteristics of Persistent Storage . 75

8.2. Journaling . 76

8.3. Snapshotting . 76

8.4. Log-Structured Storage . 78

8.5. Mixed Approach . 81

8.6. Implementing Journaling and Snapshotting 82

8.7. Conclusions . 90

III. Evaluation 91

9. Experiments 93
9.1. Experimental Setup . 93

9.2. Parallel Graph Reduction . 94

9.3. Transaction Processing - Concurrency . 97

9.4. Transaction Processing - Throughput . 100

vi

Contents

9.5. Conclusions . 104

10.Related Work 105
10.1. Imperative Persistent Languages . 105
10.2. Functional Persistent Languages . 106
10.3. Parallel Graph Reduction . 107

11.Conclusions 109
11.1. Goals and Contributions . 109
11.2. Limitations . 111
11.3. Future Work . 111

vii

1. Introduction

Where transaction processing systems could once only be found in the realm of large
organisations, the decreasing cost of computing resources and the advent of the internet
have made transaction processing systems an integral part of many small organisations
and almost every website. Typical examples of transaction processing systems include
banking systems, ticket reservation systems and inventory management systems. A
transaction processing system often manages all the data of an organisation. Data that
has to be available instantly, sometimes to many thousands of simultaneous users, while
providing the illusion that each user has exclusive access to the data. It is also crucial
that the data is kept safe from system failures, outside attackers, as well as programming
mistakes. All of these requirements make the construction of a transaction processing
system a challenging task.

In this thesis, we investigate the use of functional programming languages for the con-
struction of transaction processing systems. It has already been known for some time
that functional languages provide an interesting basis for the implementation, querying
and manipulation of databases [26, 28, 38], which are an essential part of a transaction
processing system. Interesting properties of functional programs are that they can be
executed lazily and in parallel. When a program is executed lazily, only those parts of
program are executed that are necessary to produce its result. This provides a basis for
concurrent execution of transactions written in a functional programming language, as
we only have to compute the modifications to those parts of the database that a trans-
action requests, thereby enabling fast response times. Laziness also ensures that we only
access the minimal part of the data that is necessary for the execution of a transaction,
thereby minimising access to slow persistent storage media such as hard-disk drives.
Another interesting property of functional programs, is that they are inherently parallel,
allowing execution of transactions in parallel without explicitly introducing parallelism.
Finally, functional programs are known to be relatively easy to reason about, providing
a basis for verifying correctness of transaction processing systems.

1.1. Traditional Transaction Processing Systems

Before we describe our approach, we outline a common approach to the construction of
transaction processing systems so that we can contrast this to our approach.

A database management system (DBMS) is a very generic kind of transaction processing
system [17]. The main feature of a DBMS is that it is optimised to handle a very large
amount of data stored in persistent memory. A DBMS typically provides:

1

1. Introduction

• A data model that determines how databases are structured, and which also defines
the basic operations that can be performed on databases. Examples of data models
include the relational model [13] and the XML data model [17].

• A programming interface for the interrogating and manipulation of databases. This
is usually a high-level declarative language, allowing user to perform ad-hoc queries,
leaving it up to the DBMS to determine how to execute queries efficiently. The
programming interface is usually explicitly designed to work with the data model
provided by the DBMS. For example, in relational databases a common program-
ming interface is SQL, while for XML databases XQuery and XPath are commonly
used.

While a DBMS could in principle be used as a complete transaction processing system
in itself, end users do not typically work directly on the DBMS for to two main reasons:
the programming interface is not user friendly for the end users of the system, and it
poses a security risk. To solve these problems, a transaction processing systems usually
also consists of an application that provides an interface to the users of the system, such
as a website or a physical device such as an ATM [23]. Figure 1.1 shows a an overview
of such an architecture.

User

User

User

Application DBMS Database

Figure 1.1.: Architecture of a simple transaction processing system.

The application translates transaction requests from the user into database programs
that are sent to the DBMS, and translates responses from the DBMS into responses suit-
able for end users. Additionally, the application can enforce additional domain specific
security rules that can not be enforced by the DBMS itself.

1.2. Problems in the Traditional Model

Constructing transaction processing in the traditional model presents some difficulties
in practice. The application is typically a separate process from the DBMS, which may
even run on a different machine than the DBMS. This means that the system is actually
a distributed system, as components can fail independently. Furthermore, applications
are typically created using a general purpose programming language (GPPL), which
data model, type system and computational model is usually very different from those

2

1.2. Problems in the Traditional Model

provided by the DBMS. This divide between the DBMS and the application creates
several problems, as described in the remainder of this section.

First, queries on the database are usually built dynamically from inside the GPPL
by composing strings and values. This creates the possibility of command injection
attacks [36], as well as making it difficult to validate the correctness of an application
because regular type checking can not be applied.

Second, the mapping between the data model of the GPPL and the data model of the
DBMS is often complex and unnatural, a problem known as the impedance mismatch
[17]. A programmer is required to explicitly map concepts from the DBMS to concepts
in the programming language, and vice versa. Also, a database usually supports only a
fixed set of data types, where an application may need additional data types. Creating a
mapping between data types requires a lot of effort from the programmer, and is prone
to error.

Third, because the system is distributed, the application programmer has to take care
that DBMS failure is handled correctly. This complicates the implementation of the
application as failure may occur at any point in the program where it communicates
with the DBMS. Additionally, as the application and the database are different processes,
they may evolve separately. Even if the correctness of the application has been verified,
the schema of the database may change, which could lead to incorrect behaviour if the
application is not updated.

Fourth, the communication between the application and the DBMS usually takes place
over a network, which may incur a high overhead in the execution time of transactions.
This is especially the case if the execution of a transaction requires a lot of interac-
tion with the DBMS. Also, communication between an application and a DBMS is often
performed sequentially. This limits the potential to execute transactions in parallel. Ad-
ditionally, as the DBMS does not know about the future actions of a user updating the
database, the DBMS is unable to perform certain optimisations to the concurrent execu-
tion of transactions, limiting the performance of a DBMS while executing transactions
concurrently.

Finally, concurrent execution of transactions may lead to concurrency conflicts. In order
to resolve or avoid concurrency conflicts, a DBMS may respectively abort transactions
or block access to parts of the state while another transaction is in progress [17]. The
programmer has to ensure that transaction aborts are always handled correctly. Addi-
tionally, a DBMS may repeatedly abort transactions if there is high contention for data,
or if a transactions affect a large part of the database. This may leave a user unable to
execute a transaction, a problem known as starvation. If a DBMS instead chooses to
avoid concurrency conflicts by blocking access to the state, slow users or large updates
may prevent access to the state for a long period of time.

3

1. Introduction

1.3. Persistent Functional Languages

An approach to solve many of the problems as described in the previous section is to
integrate a GPPL with the features of a DBMS, as to close the divide between them.
Such a system can either be seen as a persistent programming language [4], or a DBMS
with an integrated programming language. For the purpose of this thesis we use the
term persistent programming language, which can be seen as a programming language
that transparently manages the storage of its state in persistent memory. Persistent
programming languages solve many of the problems as discussed in the previous section:
queries can be written in the same language as that is used for the construction of the
application, the application and the DBMS are under the same type system, the system
is not distributed, and there is no network communication overhead between the DBMS
and the application.

Many attempts have already been made towards the development of persistent program-
ming languages [1, 2, 4, 14, 25], but some of the problems as discussed in the previous
section still remain. We observe that almost all of the existing systems are based on
the use of imperative programming languages to define transactions. Using functional
programming languages can solve some of the remaining problems.

One problem with the imperative programming model is that it is very different from the
declarative model of many database query languages. In an imperative language, you not
only have to tell the system what you want, but also how the system has to do it. This
makes imperative languages difficult to use for querying and manipulating databases,
and it is difficult to optimise transactions in an imperative language. In contrast, func-
tional languages are quite close to the declarative model of database query languages.
Research has been done that shows that list comprehensions in functional languages
are relationally complete, and that functional transactions can be optimised similarly
to optimising declarative database queries [38]. This makes functional languages well
suited for querying databases.

Another problem when using imperative languages for defining transactions is that they
are not well suited for concurrent execution [7]. One of the reasons for this is that
imperative transactions must be executed sequentially. In contrast, there is flexibility in
the execution order of a functional program, as any execution order produces the same
result. This allows concurrency control through lazy evaluation of transactions, allowing
higher levels of concurrency than possible using imperative languages. Furthermore,
the flexibility in execution order also allows parallel execution of independent parts of a
transaction.

1.4. Our Approach

Our approach to the construction of a persistent functional language is to integrate a
functional programming language with transaction processing capabilities. A functional
transaction executes in the context of a state, and produces a new state together with

4

1.4. Our Approach

an observable result. In order to provide persistence, we transparently store the states
produced by transactions in persistent memory.

In our approach, the system itself does not provide a data model. Instead, a DBMS with
a corresponding data model is implemented in our language. This makes our system very
flexible, as any kind of data model can be implemented. A standard library of DBMS
implementations can be provided with the language such that a user does not have
to implement a DBMS itself. The systems ensures that concurrent operations on the
database are executed correctly, and storage of states in persistent memory is handled
automatically.

Transactions are written in the same language that is used to implement the DBMS,
thus solving the impedance mismatch. Furthermore our language allows the definition
of stored transactions to provide a method for the construction of the application part
of a transaction processing systems. Figure 1.2 shows the architecture of a transaction
processing system in our approach.

User

User

User

Application DBMS

Persistent Language

Persistent Store

Figure 1.2.: Architecture in our approach.

In contrast to the traditional approach, in our approach a transaction is sent in its
entirety to the system, instead of using a sequential interface to issue individual queries.
Because of this, all operations on the database are known when the transaction starts,
allowing the execution of independent parts of the transaction in parallel. This also
means that slow clients can not affect the performance of the system, as there is no
interaction during the execution of a transaction. Further, transactions are guaranteed
to commit, so there is no explicit management of transaction commits and aborts. A
potential disadvantage of our approach is that the system does not support interactive
transactions, however we have ideas to solve this issue, which is discussed briefly in the
future work section.

Concurrent execution of transactions is achieved through lazy evaluation of states [28,38],
which provides concurrency control by means of data dependency between transactions,
without the risk of deadlock. Intuitively, concurrency conflicts are prevented by blocking
access to parts of the state in a very fine grained manner, where parts of the state can be
unblocked by evaluating those parts first. This allows laziness to provide higher levels
of concurrency than is possible in a traditional DBMS.

5

1. Introduction

1.5. Early Work and Goals

Before we discuss our contributions, we shortly review earlier work that has been done
in the area of functional persistent languages.

In 1985, Nikhil proposed the use of functional languages for the implementation, query-
ing and updating of functional databases [28]. In particular, Nikhil proposed that a
functional database can be viewed as an environment that maps identifiers to expres-
sions. A transaction may evaluate an expression in the context of an environment to
query the environment, and a transaction may update the database by replacing the
environment with a new environment. Furthermore, Nikhil sketched an approach to
implement what he calls a functional database programming language.

In 1989, Trinder [38] also explored the use of functional languages to construct func-
tional databases. He defined a model where transactions are functions that take the
current state of the database, and produce a new state of the database. A transaction
manager takes a stream of such transactions, and executes them sequentially, producing
a stream of results. As the state, Trinder uses bulk data structures such as binary trees
to implement functional databases. Trinder showed that lazy evaluation of the states
produced by transactions allows concurrent execution of transactions. Furthermore, he
identified limitations to concurrency, as well as identifying approaches to overcome some
of these limitations.

Existing implementation of persistent functional languages include STAPLE by Mc-
Nally [26], and AGNA by Nikhil [29]. Both of these approaches are based on the model
by Nikhil. However, a limitation of both approaches is that they do not support the
concurrent execution of transactions. STAPLE supports persistence through the use of
a generic persistent object system, while Agna supports persistence through paging but
does not satisfy the durability requirements for transaction processing.

The main goal of this thesis is to develop a persistent functional language that supports
concurrent transaction processing, and we want to investigate methods for persistence
that are optimised for functional languages. As a starting point for our language we
use the model as described by Nikhil and Trinder [38]. Concretely, our goals are to
develop:

1. A functional language that can be used for transaction processing.

2. Methods for the concurrent execution of transactions.

3. Methods for the efficient storage of functional states in persistent memory.

To validate the feasibility of our solutions to these goals, we implement a prototype of
our language in Java as a proof of concept, and with which we perform an experimental
analysis.

6

1.6. Contributions

1.6. Contributions

Concretely, this thesis describes the following contributions:

• a language for the definition of transactions in a functional language, including
stored transactions for the construction of applications;

• a prototype implementation of our language that supports concurrent execution of
transactions and storing states in persistent memory;

• a graph reducer based on template instantiation that has been adapted for trans-
action processing;

• a new method for load balancing in parallel graph reduction, based on sharing
results between reduction threads, and randomising their reduction order;

• a discussion of different methods for storing functional states in persistent memory,
allowing both the storage of suspended computations, as well as supporting states
that are larger than main-memory;

• forcing the evaluation of transactions as a solution to space leaks that show up in
the theoretical model due to lazy reduction of states; and

• an experimental evaluation of our prototype.

1.7. Thesis Outline

In the first part of the thesis, we present a study on the background of functional
transaction processing. First, we review functional programming in Chapter 2. Then in
Chapter 3, we provide an overview of functional transaction processing and we discuss
a model for transactional functional languages.

In the second part of the thesis, we describe our contributions. We begin by describing
our language for defining functional transactions in Chapter 4. Next, in Chapter 5 we
describe a graph reducer that has been adapted to allow dynamic creation of bindings.
In Chapter 6, we present our load balancing method for parallel graph reduction. In
Chapter 7, we describe the implementation of a concurrent transaction manager for our
language, and we forcing the evaluation of states. Finally, in Chapter 8 we describe
methods for storing states in persistent memory.

In the last part of the thesis, we evaluate our contributions. We start out by evaluating
our prototype implementation by means of experiments in Chapter 9. Then, in Chap-
ter 10 we review related work on persistent languages, functional transaction processing,
and parallel graph reduction. Finally, in Chapter 11 we present our conclusions and
provide directions for future work.

7

Part I.

Background

9

2. Functional Programming

In this chapter we review functional programming, which provides an alternative model
of computation to the commonly used imperative programming model. Computation
in the imperative model is performed as a side-effect of the sequential execution of in-
structions. In contrast, functional programming models computation in terms of the
evaluation of expressions. A functional program is essentially an expression that is re-
duced until a non-reducible expression is obtained, which is the result of the program.
Functional programming allows a form of reasoning that is similar to reasoning in math-
ematics. Additionally, in contrast to the sequential nature of imperative programs,
functional programs are naturally concurrent, and can be executed in parallel without
affecting the result of a program.

In this chapter we first discuss the lambda-calculus, which provides the theoretical basis
of functional programming. Next, we discuss how functional programming languages
extend the lambda-calculus. After that we discuss the reduction order in the execution of
functional programs. And finally, we discuss graph reduction as a method to implement
lazy functional languages efficiently.

2.1. The Lambda Calculus

At the basis of functional programming is the λ-calculus [5], which is a model of compu-
tation introduced in 1936 by Church [12]. Computation in the λ-calculus is not based on
the execution of instructions, but on the reduction of expressions in the λ-calculus. In
this model, a computational problem can be encoded as a λ-calculus expression, which
when fully reduced produces the result to the problem. In this section we provide a
quick overview of the λ-calculus, and we define some of the terminology that we use in
this thesis.

An expression in the λ-calculus consists of three basic syntactic elements:

• variables: x, y, z, . . . ;

• lambda abstractions of the form λx.E; and

• applications of the form (E1 E2).

Where E, E1 and E2 are expressions in the λ-calculus. Additional parenthesis may
be inserted into a λ-calculus expression to improve readability, and parenthesis may be
omitted if the meaning of an expression is obvious.

11

2. Functional Programming

Some examples of expressions in the λ− calculus are:

y

(λx.x)

((λx.x) y)

(λx.(x x) λx.(x x))

Bound Variables and Free Variables

A lambda abstraction of the form λx.E is said to bind all occurrences of x in E. A
variable x is bound if x is part of the body of a lambda-abstraction that binds x. A
variable x is free if it is not part of the body of a lambda-abstraction that binds x. For
example, in the expression λx.(x y), x is a bound variable, and y is a free variable. An
expression is said to be closed if it does not contain free variables.

Reduction

Reduction of a λ-calculus expression is performed by means of β-reduction, which is
defines as a rewrite rule ((λx.E) s) → E[x := s], where E[x := s] is a capture-avoiding
substitution that substitutes all free occurrences of x in E by s. For example, the
expression ((λx.(x x)) y) is reduced as follows:

((λx.(x x)) y)→ (x x)[x := y]→ (y y)

Under β-reduction, a lambda-abstraction λx.E can intuitively be seen as a definition of
an anonymous function of a single variable x with a body E. An application (E1 E2) can
intuitively be seen as a call or invocation of a function E1 with the parameter E2.

An expression of the form ((λx.E) s) is called a reducible expression, or redex for short. If
an expression does not contain any redexes, it is said to be in normal form. For example,
(y y) is in normal form because it does not contain a redex, but (y ((λx.(x x)) y)) is not
in normal form as is contains the redex ((λx.(x x)) y).

An expression can be reduced to normal form by repeatedly rewriting it using β-
reduction. However, not every expression has a normal form, for example (λx.(x x))(λx.(x x))
reduces to itself, so its reduction does not terminate. However, if there exists a termi-
nating reduction sequence, then the normal form of an expression is unique.

2.2. Functional Programming

While the λ-calculus is computationally complete, it is not very practical. Functional
programming is a programming model that is built upon the λ-calculus [33], which
solves this problem. A large body of work exists on functional programming, and many
implementations are available such as Haskell [31], Miranda [39], Clean [11], Lisp [21],
and many others. In this section we discuss how a functional programming language
differs from the λ-calculus.

12

2.2. Functional Programming

Functions

Encoding a program into a single λ-calculus expression is quite cumbersome. In func-
tional programming languages, this problem is solved by allowing the definition of func-
tions, which are named expressions that may refer to one another by their name. Usually
there is one main function which, when reduced to normal form, produces the output of
the program. During the execution of a functional program, references to functions are
resolved by substituting them with their corresponding expression in the program. For
example, consider the following program:

incr = λx.(x+ 1)

main = (incr 7)

The execution of this program consists of reducing the main expression (incr 7). In order
to do this, we first have to resolve the reference incr , obtaining the redex ((λx.x+1) 7)
which can then be reduced to 8.

Additionally, functional programming languages usually allow functions to be written in
the more traditional form f(x1, . . . , xn) = E, which can be translated to an expression
f = λx1 λxn . E.

Data Constructor Functions

Functional programming languages also commonly provide methods to construct com-
plex data types through data constructor functions. In contrast to regular functions,
data constructor functions can not be reduced. For example, lists can be represented
recursively using two data constructor functions, usually named Cons and Nil , where
Cons represents a list element followed by a list, and Nil represents an empty list. To
encode the list [1, 2, 3], we can write:

Cons 1 (Cons 2 (Cons 3 Nil))

In order to work with constructor functions, functional programming languages usually
provide case distinction expressions. Consider the following example:

length(x) = case x of

Nil → 0

Cons x xs → 1 + length xs

This function computes the length of a list x recursively. If the normal form of x is of
the form Nil, then the case expression reduces to 0, and if the normal form of x is of
the form Cons x xs, then the case expression reduces to 1 + length xs.

13

2. Functional Programming

Primitive Data Types

Encoding basic data types such as integers is not very practical in the λ-calculus, as
well as being very inefficient in practice. For this reason most functional programming
languages allow the use of primitive data types and primitive functions, such as number
types and arithmetic functions. We have already seen the use of primitive data types in
the examples above.

2.3. Lazy and Parallel Evaluation

At any time during the reduction of a functional expression, there may be multiple re-
dexes that can be reduced. Typical programming languages evaluate the arguments of
a procedure before invoking the procedure. Additionally, purely functional program-
ming languages allow lazy evaluation of function arguments, delaying the evaluation
of an argument until they are actually needed. For example, consider the following
function:

f(x y) = if x > 0 then x else y

If we reduce f(4 (3 × 3)) under eager evaluation we obtain the following reduction
sequence:

f(4 (3× 3))→ f(4 9)→ if 4 > 0 then 4 else 9→ 4

Under lazy evaluation we obtain the following reduction sequence instead:

f(4 (3× 3))→ if 4 > 0 then 4 else (3× 3)→ 4

We see that under lazy evaluation, (3×3) is not evaluated, as it is not needed to produce
the normal form of the expression. Lazy evaluation is very important for our functional
transaction processing language, as it allows concurrency by reducing states lazily, as
discussed in Chapter 3.

Additionally, lazy evaluation allows the definition of control flow structures such as
if-expressions as functions as opposed to special language constructs as is common in
eagerly evaluated languages. Additionally, lazy evaluation has the property that if there
exists a reduction order that terminates, then lazy evaluation terminates. In practice this
allows the use of recursively defined infinite data structures in a functional program, such
as the Fibonacci sequence, while still guaranteeing that the program terminates.

In order for lazy evaluation to be correct, functions must be pure. A pure function is
a function that is deterministic and is side-effect free. A function is deterministic if
given the same input, it always produces the same output. A function is side-effect free
if it does not depend on or affect the environment in which the program is executed.
For example a function that prints a string to the console is deterministic, but it is not
side-effect free.

14

2.4. Graph Reduction

An important consequence of purity is that reduction of expressions that only contain
pure functions results in a unique normal form. This means that during reduction any
reduction order may be chosen, and we are guaranteed to obtain the same result. Eager
evaluation corresponds to reducing the innermost redexes in an expression first, and lazy
evaluation corresponds to reducing the outermost redexes in an expression first.

To precisely define the reduction order chosen by lazy evaluation, we use the notion of
weak head normal form [33]. We say that an expression E is in weak head normal form if
E is a lambda-abstraction, a data constructor function, or a primitive data type. In lazy
evaluation, we always reduce toward weak head normal form. In Chapter 5 we discuss
how this is done in our prototype implementation.

Another implication of purity is that sub-expressions may be reduced in parallel, while
the final result remains deterministic, which means that the functional programming
model is naturally parallel. This is in contrast to the imperative programming model,
where parallelism generally has to be introduced explicitly, and where it may lead to
non-deterministic results. However, in order to take advantage of parallel reduction, a
program has to make sure there are always multiple sub-expressions that can be reduced
at any one time.

2.4. Graph Reduction

Graph reduction is a method for the efficient implementation of lazy functional program-
ming languages. To illustrate why graph reduction is needed, consider that we have a
function f(x) = x + x, and we want to know the normal form of f(2 × 3). Under lazy
evaluation we obtain the reduction:

f(2× 2)→ 2× 3 + 2× 3→ 6 + 2× 3→ 6 + 6→ 12

Note that the argument 2 × 3 is duplicated when instantiating the function body of
f , requiring us to evaluate the argument twice. Under eager evaluation this does not
happen, as shown in the reduction:

f(2× 3)→ f(6)→ 6 + 6→ 8

In graph reduction, expressions are represented by graphs, where nodes represent the
syntactic elements of an expression, and edges represent a sub-expression relation be-
tween these expressions. Compared to representing expressions syntactically, a graph
representation allows the sharing of sub-expressions. Graph reduction allows the effi-
cient implementation of lazy reduction, because instead of duplicating arguments as in
the example, it allows sharing the argument.

15

2. Functional Programming

f

×

2 3

→

+

×

2 3

→
+

6
→ 12

Figure 2.1.: Graph reduction of f(2× 3).

Figure 2.1 shows how reduction of f(2 × 3) is performed using graph reduction. On
the left side we see f(2 × 3) in graphical form. When we reduce this graph, we see
that the sub-graph for 2 × 3 is shared when the body of f is instantiated. Sharing
of a computation result is performed by overwriting the root of a reducible expression.
Similarly, graph reduction allows sharing of data in order to conserve memory, as can
be seen in the example by sharing the intermediate result 6.

2.5. Conclusions

In this chapter we have provided a quick review of functional languages, and the prop-
erties that are relevant for this thesis. In particular, we have seen:

• The lambda-calculus provides the basis of functional programming languages.
• Functional programming languages extend the lambda calculus with structured
data, primitive data types and primitive functions, as well as allowing programs
to be defined as multiple expressions that may refer to one another.

• Purity provides flexibility in the reduction order of functional programs, allowing
lazy and parallel reduction.

• Graph reduction provides a method for the efficient implementation of lazy func-
tional languages.

In the Chapter 3 we discuss how functional programming languages can be used for
transaction processing, and in Chapter 5 we discuss our implementation of graph reduc-
tion.

16

3. Functional Transaction Processing

In this chapter we discuss the theoretical background of using functional languages for
transaction processing . First, we discuss transaction processing in general. Next, we
review the work by Trinder [38] as a model for functional transaction processing. After
that, we show that this model can be implemented efficiently using graph reduction.
Next, we show that this model allows concurrent execution of transactions by lazy re-
duction of states. Finally we discuss a model for transactional functional languages,
based on the work by Nikhil [28].

3.1. Transaction Processing

In this section we first discuss the general concepts of transaction processing and trans-
action processing systems.

A transaction is a collection of operations on a state that provides guarantees about its
execution as a whole [18]. Transactions are used in data management systems such as
databases, file systems and version control systems, to ensure that operations on the
data are executed correctly. Most such systems guarantee four correctness properties for
the execution of transactions, known as the ACID properties [19]:

Atomicity: Either all operations in a transaction are executed, or none at all.

Consistency: Consistency rules are not violated in the states between the execution of
transactions.

Isolation: The result of transactions executing in parallel is the same as the result for
some sequential executions of the transaction.

Durability: Once a transaction has been committed, its effects must persist even in the
case of system failure.

A transaction can be terminated by either committing, making its effects persistent, or
aborting, undoing its effects A transaction may be aborted due to a violation of any of
the ACID properties, on request by the initiator of the transaction, or due to connection
or system failures during the execution of the transaction.

17

3. Functional Transaction Processing

We can now formalise the property of isolation in terms of serialisability and recover-
ability:

Serialisability: A concurrent execution of a set of transactions producing some final state
is serialisable if some sequential execution of the transactions produces that same
final state.

Recoverability: Committed transactions may not have read data that is written by
aborted transactions. This implies that, as long as a transaction t has not been
committed, all transactions that have read changes by t can not commit until t
commits, and if t chooses to abort, all transactions that have read changes by t
must also abort.

A transaction processing system is a system that manages the concurrent execution of
transactions by multiple users on a single state. A typical example of a transaction
processing system is a banking system, where the state consists of bank accounts, and
where transaction types include transferring funds between accounts, depositing funds,
withdrawing funds, and adding interest.

In the literature, many examples of transaction processing systems can be found, ranging
from simple single-computer systems, to very complex multi-server systems as can be
found in large organisations [23]. This thesis only considers transaction processing in
shared memory systems, where all state resides on one machine. Transaction processing
can also be done in distributed systems, but this is outside the scope of this thesis.

Ensuring that the ACID properties hold results in two main challenges for transaction
processing system implementations:

• In order to minimise execution times of individual transactions, the system has
to be able to execute transactions concurrently, i.e. it must allow the execution
of transactions to overlap in time. In order to ensure that serialisability and re-
coverability are not violated, a transaction processing system typically applies
concurrency control techniques.

• The system has to maintain the ACID properties even in the case of a system
failure. Writes to persistent storage may only be partially complete at the time
of failure, which may lead to inconsistent states or transactions not being exe-
cuted atomically. A transaction processing system usually solves this by journaling
transactions before executing them, and by executing a recovery procedure after
a system crash that restores the state using information from the logs. This is
discussed in more detail in Chapter 8

In the remainder of this chapter, we discuss how functional languages can be used to
construct transaction processing systems.

18

3.2. A Model for Functional Transaction Processing

3.2. A Model for Functional Transaction Processing

In this section we discuss how functional languages can be used for the construction of
transaction processing systems, by reviewing the work of Trinder [38].

A transaction function is a function of type State → State × Result that takes a
state and produces a new state together with an observable result. Figure 3.1 shows a
pictorial representation of a transaction function.

Transaction Function
s : State s� : State

t : Result

Figure 3.1.: A transaction function.

As an example, consider that State = Integer × Integer and Result = String.
We could define the following transaction functions in a functional language:

1 get_a (a, b) = ((a, b), show a)

2 get_b (a, b) = ((a, b), show b)

3 swap (a, b) = ((b, a), "")

Here we assume that the show function converts its argument into a string. The get a

and get b state transformers respectively produce as their observable result the first
and second integer from the state, and return the state as it is. The swap state trans-
former swaps the two integers in the state, and returns an empty string as its observable
result.

A functional transaction processing system can be constructed using a transaction man-
ager function of type State × [Transaction] → [Result] that takes an initial state and
a stream of transactions, and produces a stream of results. A simple implementation
of a transaction manager function in a functional programming language is the follow-
ing:

1 tm : State × [Transaction] → [Result]

2 tm state [tx:txs] = result:(tm new_state txs) where

3 (new_state, result) = tx(state)

That is, given a state state, we take a transaction tx from the stream of transactions
txs. We then execute the transaction on the state by invoking tx(state) to obtain
a new state new state and a result result. We concatenate the result to the result
stream and produce the rest of the result stream by recursively invoking the tm function
to process the rest of the transaction stream on the new state.

19

3. Functional Transaction Processing

t1 t2 . . . tn
s0 s1 s2 sn−1 sn

r1 r2 rn

Figure 3.2.: Executing a stream of transactions.

Figure 3.2 shows how the tm function works for the execution of a stream of transaction
functions t1, t2, . . . , tn on an initial state s0. We see that the output state of each
transaction ti is the input state of the next transaction ti+1. Additionally, we see that
the stream of transactions functions produces a stream of observable results r1, r2, . . . ,
rn.

For example, using the transaction functions get a, get b and swap that we have just
seen, we can execute the sequence of transactions [get a, get b, swap, get b, ...]

on the state initial state (1, 2) using the tm function as follows:

tm (1, 2) [get a, get b, swap, get b, . . .] → ["1", "2", "", "2", . . .]

Assuming that we want multiple users to use the system, we can assume that each user
produces a stream of transactions, and expects a stream of results. To obtain a single
stream of transactions for the tm function, the streams from the users have to be merged
into a single stream of transactions. Trinder merges the streams from multiple users
non-deterministically. Additionally, we have to distinguish which result in the output
stream belongs to which user. To do this, transactions in the merged stream can be
tagged by the identifier of the user. The transaction manager can tag a result using the
tag of the transaction it processed, such that we know to which user a result belongs.
Because we implement our prototype in an imperative language, our approach differs
from that of Trinder, so we will not cover this topic in further detail.

What is interesting about the functional transaction processing model is that it is rel-
atively east to guarantee that the ACID properties hold. Serializability is trivially sat-
isfied, as transactions are executed serially. Recoverability can be satisfied by requiring
that all transactions are total functions. A total function is a function that always pro-
duces a result. This also means that transactions have to handle any error that may
occur, such as consistency errors. For example, a consistency property on a state can be
guaranteed by wrapping a transaction function t by a function of the form:

if g(t(s)) then t(s) else s

Where s is the current state, and g validates that the consistency properties hold in the
new state f(s). Finally, durability can be guaranteed by journaling transactions before
executing them, which we discuss in more detail in Chapter 8.

20

3.3. Executing Functional Transactions Efficiently

A limitation of this model in practice is that we have to assume that transactions can
not abort due to run-time errors such as running out of memory. Another problem
in practice is that transactions may be non-terminating, or take a very long time to
terminate. However, these issues are out of the scope of this thesis.

3.3. Executing Functional Transactions Efficiently

Now that we have seen how the functional transaction processing model works, we will
now discuss the efficient implementation of this model using graph reduction, as shown
in the work of Trinder [38], Nikhil [28] and McNally [26].

Using graph reduction, we can represent a state as a graph that has a single root node.
When a transaction is applied to a state graph s, a new state graph s� is constructed.
The essential idea to maintain efficiency is that if sub-graphs of the state s are used in
the construction of s�, we share those sub-graphs between s and s� instead of copying
the whole graph. Intuitively we could say that in the construction of the new state s�,
we only encode how s� differs from s.

To make efficient use of sharing, it is neccesary that states have a tree structure, as this
allows sharing of whole branches of the tree that are not modified. If instead the state
has a sequential structure, such as a list, we are forced to copy most of the state if a
single element is modified.

s

Branch

Branch

Leaf Leaf

Branch

Leaf Leaf

s�

Branch

Branch

Leaf

Figure 3.3.: Sharing common sub-graphs between states.

Figure 3.3 shows an example of sharing in action. We see two states, where s and s�

are pointers to the root nodes of these states. The initial state s contains some abstract
tree data structure. After a transaction updates a single tree element of the state s, we
obtain the state s�. We see that only the path from the root of the tree to the updated
element is stored in the new state s�, and we refer to the old state s for branches of the
tree that have not been modified. Nodes reachable from s� are emphasised, showing that
the amount of memory required to store the state s� does not increase compared to the
amount of memory required to store the state s.

21

3. Functional Transaction Processing

3.4. Executing Functional Transactions Concurrently

In the previous section we have seen that the functional transaction processing model
can be implemented efficiently using graph reduction for transactions that are executed
serially. However, for acceptable response times in a transaction processing application,
we need to be able to execute transactions concurrently. In this section we show how
functional transactions can be evaluated concurrently by reducing states lazily, as shown
in the work of Trinder [38].

The essential idea for concurrency in functional transaction processing is that while a
state s is being constructed by a transaction t, another transaction t� can already start
producing a new state s� based on the parts of s that have already been constructed.
This idea essentially shows that concurrent evaluation of transactions is possible, as both
transactions t and t� are evaluated at the same time.

Taking this idea further, we can first construct those parts of the state s that are required
for the construction of the new state s�. This idea can be implemented by constructing
states lazily. That is, we only construct parts of the state s if they are required for the
construction of state s�. This means that states do not have to be reduced to normal
form at all unless their normal form is required. In a transaction processing system,
only the observable results of transactions need to be reduced. This means that parts
of states only have to be reduced if they are required for the reduction of a transaction
result.

We now illustrate this concept through an example. Assume that we have some initial
state s, containing some abstract tree data structure. We have a transaction function tu
that takes s and constructs a new state s� by applying a mapping function map to the
tree in state s, mapping the function f . We also have a transaction tr applied to the
state s� that reads the state by producing as observable result r a boolean representing
if some element is contained in the tree using a function contains. For simplicity, we
omit the details of the function and data structure implementations.

s

Branch

Branch

Leaf Leaf

Branch

Leaf Leaf

s’

map f

r

contains

Figure 3.4.: Example system before reduction.

Figure 3.4 shows a graphical representation of the example system before any reduction
has taken place. We see that s points to the root node of the initial state, s� points to
the root node of the state produced by tu, and r points to the observable result of tr.

22

3.4. Executing Functional Transactions Concurrently

We see that common parts of s and s� are shared, and we see that common parts of s�

and r are shared.

Figure 3.5 shows intermediate steps in the reduction of the observable result r. It can
be seen that the parts of s� that are required for the reduction of r are reduced on
demand through lazy evaluation. In the first and second reduction step, in order to
evaluate contains we first need the result of map f . In both cases we reduce map f to
obtain Branch, which enables contains to be reduced by a single step, selecting one of
the branches. In the last reduction step, map f evaluates to Leaf , allowing the contains
function to reduce to its final result: True.

s

Branch

Branch

Leaf Leaf

Branch

Leaf Leaf

s’

Branch

map f map f

r

contains

s

Branch

Branch

Leaf Leaf

Branch

Leaf Leaf

s’

Branch

map f Branch

map f map f

r

contains

s

Branch

Branch

Leaf Leaf

Branch

Leaf Leaf

s’

Branch

map f Branch

map f Leaf

r

True

Figure 3.5.: Concurrent evaluation of functional transactions.

The example shows that only those parts of s� are reduced that are actually needed for
the reduction of r. More generally, the example shows that a transaction that queries
the state may finish before a transaction that updates the complete state has been fully
evaluated.

23

3. Functional Transaction Processing

Limitations to Concurrency

The amount of concurrency that can be provided by this method is not unlimited.
Trinder [38] was the first to investigate some of the limitations of this form of concurrency,
and provided some approaches to overcome these limitations. In this section we will only
discuss the limitations to concurrency, and refer the reader to the thesis of Trinder for
additional details.

The evaluation of a transaction can be blocked by a redex that prevents access to a
part of the state while it is being reduced. For example, if we have an expression
E = if x then a else b, then either the value a or b is only constructed when the value
of x is known. So, all transactions that require access to the result of E are prevented
from making progress until the evaluation of x has been completed.

Using the concept of blocking, we can analyse how transactions might affect each other.
A transaction that does not modify the state never hinders another transaction, as it
does not insert redexes into the state. A transaction that modifies the state without
reading from it is itself also never blocked, as the new state is reduced lazily. However,
a transaction that modifies the state may hinder transaction that read the state, as the
redexes that it inserts into the state may block access to part of the state that another
transaction needs to access.

Blocking should present be no problem for redexes whose reduction takes just takes a
constant number of steps. An example of such a redex is the application of map as in
the example in the previous section. However, if the reduction of the redex requires a
number of reduction steps dependent on one of its arguments, access to parts of the state
could be prevented for a long time.

A concrete example of this problem that Trinder provides is maintaining balance in
binary search trees when inserting elements. The problem here is that we only know
if we need to re-balance at a certain node after the element has been inserted. This
means that for the redex at the root of the tree, we only know what the result is once
insertion is completely done, preventing concurrent access to the tree completely during
the insertion of an element.

3.5. Transactional Functional Languages

So far we have assumed that the state of the system is of some fixed type State, and that
a fixed set of transaction functions are implemented by the system. In this section we
describe a model for transactional functional languages, which provides a more flexible
model, allowing the type of the state to change dynamically, and allowing functions to be
created dynamically. This model is used in the languages AGNA [29] and STAPLE [26],
and also forms the basis of our prototype language. In this section we first discuss the
structure of states, followed by the structure of transactions, and finally we discuss the
execution of transactions.

24

3.5. Transactional Functional Languages

States

A state in a transactional functional language is a set of bindings from names to expres-
sions, where expressions may refer to other expressions in the state by their name. A
state is similar to a regular functional program, except that there is no main function.
Transactions allow the state to be changed over time by replacing the state by a new
state.

Expressions in the state can represent data as well as functions. A data expressions may
include primitive data types such as integers and strings, as well as bulk data types such
as lists, trees, relations and graphs. A function expression is a λ-abstraction, which may
be used to operate on the data stored in the state. Consider the following example:

users → Cons ”Alice” (Cons ”Bob” (Cons ”Eve” Nil))
length → λ list . case list of

Nil → 0
(Cons x xs) → 1 + length xs

This example shows a state where the expression users models a list of user names, and
the expression length is a function that can be used to compute the length of a list.

Transactions

A transaction in a transactional functional language consists of two parts, a result ex-
pression and an update environment.

A result expression is an expression to be evaluated in the context of the current state,
where the expression may refer to expressions in the state by their name, and which
produces the observable result of the transaction. The result expression is in a way
similar to the main expression of a functional program, with the main difference being
that multiple result expressions may be evaluated over the same state by issuing multiple
transactions. Consider the following example:

result = length users

In this example, the free variables length and users refer to expressions in the state.
When evaluated in the example state as shown in the previous sub-section, this expres-
sion reduces to the value 3.

An update environment is a set of bindings from identifiers to expressions that replaces
the state of system when the transactions is executed. Using update environments,
transactions may insert functions into the state that can be used in later transactions.
Transactions can also update data expressions in the state by replacing their binding
with a new value.

25

3. Functional Transaction Processing

Consider the following example:

length’ = length
users’ = Cons ”Dave” users

In this example, again the free variables length and users refer to expressions in the
state. When evaluated in the state as in the previous sub-section, the length function
is copied to the new state, and a new username “Dave” is prepended to the list in
users.

Execution of Transactions

Now that we have seen the structure of transactions and states, we can describe how
transactions are executed in this model. Execution consists of two steps, binding the
transaction to the state, and reducing the result expression. Binding a transaction to the
state is performed by resolving names that refer to expression in the state. The bound
environment is the state for the next transaction The bound result expression can be
reduced to normal form to obtain the observable result of the transaction.

Bind Bind . . . Bind

Reduce Reduce Reduce. . .

s0 u1 u2 un−1 un

r1 r2 rn

t1 t2 tn

o1 o2 on

Figure 3.6.: Executing transactions in a transactional functional language.

Figure 3.6 shows the flow of data for the execution of a sequence of transactions t1, . . .
, tn on an initial state s0. Each transaction ti is bound to the state, producing a bound
update environment ui, which is the state for the next transaction, and producing a
result expression ri, which is reduced to find the output oi of the transaction.

26

3.6. Conclusions

3.6. Conclusions

In this chapter we have seen how functional languages can be applied to transaction
processing. In particular, we have seen:

• The concept of transactions and transaction processing systems.
• A model for functional transaction processing systems.
• The efficient implementation of functional transaction processing by sharing com-
mon parts between states.

• Using lazy reduction of states to allow concurrent execution of functional transac-
tions, and the limitations of this approach.

• A model for transactional functional languages that allows bindings in the state
to be created dynamically.

In Chapter 4 we describe our prototype language, which is based on the model for
transactional functional languages that we have seen in this chapter. In Chapter 7 we
discuss the implementation of a transaction manager that implements the execution of
transactions in transactional functional languages. In Chapter 5 we discuss a procedure
resolve that implements the binding operation to execute transactions, and a procedure
nf to perform reduction of result expression.

27

Part II.

Contributions

29

4. A Prototype Functional Transaction
Processing Language

In the previous chapter we have discussed functional transaction processing, and we have
seen a model for transactional functional languages. In this chapter we describe a pro-
totype language for functional transaction processing that incorporates these ideas. Our
language is similar to a regular functional programming language, but it has additional
constructs for transaction processing.

<transaction> ::= (<definition> | <stored>)*
<stored> ::= ‘transaction’ <variable> (‘(’ <variable>* ‘)’)?

‘{’ <definition>* ‘}’
<definition> ::= <variable> (‘(’ <variable>* ‘)’)? ‘=’ <expression>
<expression> ::= LITERAL

| (<variable> | <constructor>) (‘(’ <expression>* ‘)’)?
| ‘match’ <expression> ‘{’ (<pattern> ‘->’ <expression>)+ ‘}’
| ‘let’ (<variable> ‘=’ <expression>)* ‘{’ <expression> ‘}’

<pattern> ::= <constructor> (‘(’ (<variable> | ‘ ’)* ‘)’)?
<variable> ::= ‘a’..‘z’ (‘a’..‘z’ | ‘A’..’Z’)* ‘’’?

<constructor> ::= ‘A’..‘Z’ (‘a’..‘z’ | ‘A’..’Z’)*

Figure 4.1.: Grammar of prototype language.

Figure 4.1 shows the EBNF syntax of our language, which is explained in the sections
below. In the first section, we discuss our expression syntax, which is similar to regular
functional languages. Next, we discuss the language constructs for the specification
of functional transactions. After that, we discuss stored transactions, which can be
invoked through an external interface, and provide a basis for a security mechanism
and performance optimisations. Finally, we discuss how our language can be used to
construct a transaction processing system with a domain-specific interface.

31

4. A Prototype Functional Transaction Processing Language

4.1. Expressions

We start out by discussing the expressions language of our prototype language, which is
similar to existing functional programming languages.

Expressions are defined recursively, and can be:

• A literal, such as an integer, a floating point number or a string.

• A function application of the form f(v1 . . . vn) that denotes the application of
the arguments v1 . . . vn to f , where f is either a variable or a data constructor
function. If f has no arguments, the parenthesis may be omitted.

• A match expression of the form match E {P1 -> E1 . . . Pn -> En } that de-
notes a case distinction over the data constructor function obtained by reducing
E, and reduces to Ei in Pi -> Ei if Pi matches the data constructor function.
A pattern has the form C(v1 . . . vn), and matches a data constructor function
of the form D(v1 . . . vm) if C = D, where m must be equal to n. A pattern
of the form C(v1 . . . vn) -> E binds the variables v1, . . . , vn in the expression
E. Additionally, each pattern C(v1 . . . vn) in a match expression must have a
distinct constructor C, which implies that the order of patterns does not affect the
semantics of the program.

• A let binding of the form let v1 = E1 . . . vn = En in E that denotes that the
variables v1, . . . , vn with values E1, . . . , En are bound in E. A let expression ex-
plicitly introduces sharing of the expressions E1, . . ., En in E.

Our language supports structured data through data constructor functions, as discussed
in Section 2.2. A data constructor function is distinguishable from regular functions
as data constructor functions start with an uppercase character, where regular function
names start with a lowercase character.

Furthermore, our prototype implementation features some built-in functions that may
be used in expressions. We have the arithmetic functions add, sub, mul and div to
operate on primitive numerals. We have a function equals that checks for equality of
two primitive literals a and b, returning True if a = b or False if a �= b. We have a
function compare that compares two primitives a and b and returns LT if a < b, EQ if
a = b or GT if a > b. Finally, we have a special function seq that evaluates its first
argument to weak head normal form, and returns its second argument. The function
seq is used to avoid unnecessary laziness in the implementation of certain functions,
such as fold [30].

32

4.2. Transactions

4.2. Transactions

Our language differs from regular functional programming languages in that programs
are transactions that are executed in the context of a state. In our language, a state
consists of a set of bindings of names to closed expressions, as well as a set of stored
transactions. A transaction may produce a value as its result by means of a result
expression that is evaluated in the context of the state, and a transaction may modify
the state by adding, removing or updating bindings and stored transactions.

The system accepts a sequence of transactions as input, where transactions may come
from many different users using the system concurrently. Semantically, this sequence
of transactions is executed sequentially, thereby ensuring atomicity and isolation. Our
implementation of this language enables concurrent execution of transactions, as well as
ensuring durability of the effects of executed transactions. The implementation of our
language is discussed in the chapters following this chapter.

A transaction consists of a set of definitions and a set of stored transactions. A definition
can be of the form x = E where x is variable and E is an expression, or it can be of
the form f(v1 . . . vn) = E to define a function expression f = λv1. . . . λvn. E. Stored
transactions are discussed in the next section.

In order to support transaction processing, we introduce two kinds of variables: current
state variables and next state variables. To distinguish them syntactically, next state
variables are primed. For example, we write x to refer to x in the current state, and we
write x’ to refer to x in the next state. All expressions may refer to both the current
state and the next state.

In contrast to the transactional functional language model, a transaction in our language
only describes the updates to the state. In order to specify an update to the state, we
assign an expression to a next state variable. For example by writing x’ = E, the value
of x is E in the next transaction that is executed. We may also assign values to current
state variables to define functions that do not go into the state, i.e. that are local to the
transaction. E.g. we may write x = E, and use the variable x in the transaction. We
also have a special local variable result, which when assigned produces the observable
result of the transaction.

Example: A Database of User Names

We now illustrate the use of our language for defining functional transactions by means
of some examples. Let us assume that we want to create a database of user names where
we want to be able to add user names, see a list of all user names in the database,
test if a certain user name is in the database, and see how many user names are in the
database.

For simplicity, we represent the set of user names as a list. A more efficient approach
is to use an associative map, but this complicates the implementation and strays from
our goal of introducing the language. To see a list of user names, we simply fetch the

33

4. A Prototype Functional Transaction Processing Language

list. To test if a certain user is in our database, we use a generic function to test if an
element belongs to a list. To query how many users there are in our database, we use a
generic function to compute the length of a list.

1 users’ = Nil

2 length’(list) = match list {

3 Nil -> 0

4 Cons(x xs) -> add(1 length’(xs))

5 }

Listing 4.1: Setting up the database.

Listing 4.1 shows a transaction that updates the state to include a variable users, which
is initialised to the empty list, and a function length that can be used to compute the
length of a list. Note that in the definition of length’ we refer to length’ itself to
create a recursive function. If we would refer to length instead, we would refer to the
value of length in the current state.

1 users’ = Cons("bob" users)

2 result = length(users’)

Listing 4.2: Inserting a user name.

The transaction as shown in Listing 4.2 inserts a user into the database, and requests
the size of the resulting database. Note that in the expression users’ we refer to users
in the current state; thus inserting a user into the existing database. The observable
result of the transaction is the length of users’, which includes our newly inserted user
“bob” as we refer to users in the next state.

1 contains(value list) = match list {

2 Nil -> False

3 Cons(x xs) -> match equals(x value) {

4 True -> True

5 False -> contains(value xs)

6 }

7 }

8 result = contains("bob" users)

Listing 4.3: Querying the database.

Finally, the transaction shown in Listing 4.3 requests whether a user name is in the
database using a locally defined function contains. The contains function only exists
during the execution of the transaction, and is not available to any subsequent transac-
tion.

34

4.3. Stored Transactions

4.3. Stored Transactions

A stored transaction is a predefined transaction that is stored in the state of the system,
and is similar to a stored procedure in traditional database management systems. A
stored transaction may be parameterised, and can be invoked multiple times. Stored
transactions provide a basis for the construction of a domain specific interface to a
functional transaction processing system, as discussed in the next section.

First, the main difference between a stored transaction and a function is that a function
defines a transformation over an expression, while a stored procedure defines a transfor-
mation over a state. This means that, given a state, a stored transaction can be executed
on its own, while a function is part of an expression in a transaction.

The definition of stored transactions is part of a regular transaction, as it modifies
the state of the system. A stored transaction consists of a name, a list of parameter
names, and a body that is a transaction. The body of a stored transaction is a regular
transaction, but this transaction is only executed when the stored transaction is called.
When a stored transaction is called with a set of argument bindings, free variables in its
body are bound to the current state and the arguments that have been provided.

Consider the following example:

1 transaction add_user(name) {

2 result = contains(users name)

3 users’ = match result {

4 True -> Cons(name users)

5 False -> users

6 }

7 }

This transaction defines a stored transaction called add user that has a parameter name.
The body of the stored transaction contains a result expression that tests whether name
is already in the list users, and inserts name in users if the name is not already in the
list. This example shows that a stored transaction can enforce a consistency rule, as it
enforces that no duplicates are inserted into a list.

A stored transaction can be invoked through an external interface, for example an
HTTP interface could be used to invoke the stored transaction from the example as
follows:

POST /add user?name=bob

The observable result of the stored transaction call can be returned in the body of the
HTTP response.

Stored transactions provide a basis for integrating a role based security mechanism into
our language. A user can authenticate itself to the system when calling a transaction,
and the system can decide based on the role of the user if it is allowed to use that stored
transaction.

35

4. A Prototype Functional Transaction Processing Language

Additionally, if our language would be extended to support typing, a stored transaction
only has to be type checked and pre-compiled when it is inserted into the state. This
allows a higher level of performance than using regular transactions, as less work has to
be performed per transaction.

4.4. Domain-Specific Interfaces

Being able to invoke stored transactions using an external interface provides a basis
for the implementation of a domain-specific interface to an application in our language.
Figure 4.2 shows a possible architecture of a system based on this approach. The appli-
cation consists of a set of stored transactions that implement a domain-specific interface.
Additionally, this architecture extends the architecture that was shown in the introduc-
tion with a presentation layer. The presentation layer is outside the persistent language,
and can be a website, or a physical system such as an ATM.

User

User

User

Presentation Application DBMS

Persistent Language

Persistent Store

Figure 4.2.: Architecture in our approach.

This system looks similar to the architecture of the traditional approach as discussed in
the introduction, where we have a DBMS together with a general purpose programming
language. However, the key difference here is that the interface between the presentation
layer and the application is domain specific. This means that there is no impedance
mismatch, there is no risk of command injection attacks, communication between the
presentation layer and the application layer is kept to a minimum, and there are no
interactive transactions that may affect concurrency. The only issue remaining is that a
system using this architecture is distributed. However, assuming that the correctness of
the application has been verified, the only notable failures that can occur in this setting
are in the presentation layer, so the integrity of data is not affected.

36

4.5. Conclusions

4.5. Conclusions

In this chapter we have seen a language for the definition of transactions using functional
languages. In particular, we have seen:

• The syntax of our language.
• Expressions, data constructor functions and built-in functions in our language.
• Current state variables and next state variables provide a basis for defining func-
tional transactions that operate on a state consisting of a set of bindings.

• Stored transactions can be invoked externally, and provide a basis for security and
performance optimisations.

• Stored transactions can provide a basis for the construction of transaction process-
ing systems with a domain-specific interface.

In Chapter 5 we discuss the implementation of a graph reduction that can be used
to implement our prototype language. In Chapter 7 we discuss the implementation
of a transaction manager for the execution of transactions written in our prototype
language.

37

5. Graph Reduction for Transaction
Processing

In this chapter we discuss the implementation of graph reduction for the implementation
of functional programming languages. As a basis for our implementation we use template
instantiation [32], which we have modified to allow bindings to be created dynamically.
We use the graph reducer discussed in this chapter as the basis for a parallel graph
reducer, which is discussed in Chapter 6.

In this chapter, we first discuss the notation that we use to describe our implementation.
Next, we review template instantiation as a method for the implementation of graph
reduction. We then discuss the modifications to template instantiation that are needed
to create bindings dynamically. After that, we provide a global overview of our graph
reduction implementation, followed by the details of our implementation: resolving free
variables, weak head normal form reduction, and finally the reduction of graphs to
normal form.

5.1. Preliminaries

Our implementation is written in Java, but for the purpose of conciseness we describe
the implementation in a pseudo-language. We now briefly cover the notation that we
use in this thesis.

We assume that memory is laid out according to a pointer structure model. A pointer
structure consists of a fixed number of named fields that each have a corresponding
value. Values can be either pointers to other nodes, primitive data values, or an array
of values.

We write type T = f1:T1 * . . . * fn:Tn to define the type of a node T that has fields
f1, . . ., fn of their respective types T1, . . ., Tn. We write data T = C1(f1:T1, . . .,
fn:Tn) | . . . | Cn(g1:U1, . . ., gn:Un) to define an enumeration data type T with pa-
rameterised elements identified by a constructor C1, . . ., Cn. Given a pointer x : T

where T is an enumeration data type, we can determine if x has constructor C by writing
x is C.

In the definition of procedures, we assume that we can pattern match on the constructor
of an enumeration data type. For example, if we define a procedure f(C(x) : T) {
. . . } and a procedure f(x : T) { . . . } where C is a constructor of T, and we execute

39

5. Graph Reduction for Transaction Processing

f(new C(x)), then f(C(x) : T) is invoked. If we execute f(new D(x)), then f(x :

T) is invoked.

We assume that parameters are passed by reference if an argument is a node or array,
or passed by value if an argument is of a primitive data type. We write a ← b to assign
b to a.

We write n.f to access a field f of some node n. New nodes can be constructed by
writing new T(v1, . . ., vn), where T is the type of the node, and v1, . . ., vn are values
that are assigned to the fields of the node being constructed, in the order of its type
definition.

We can construct a new array of type T and length n by writing new T[n]. We write
a[i] to access the ith element of an array a, where the first index of the array is 0.
Furthermore we assume that that we can request the length of an array a by writing
a.length.

Finally, for this implementation we are not concerned with memory management. We
assume that an unlimited amount of memory is available. In our actual implementation
in Java, the garbage collector reclaims memory that is no longer accessible to provide
the illusion of having an unlimited amount of memory available.

5.2. Template Instantiation

We now discuss template instantiation [32] as a method for the implementation of graph
reduction to implement lazy functional programming languages.

The basic idea of template instantiation is that for every function in a functional program
we construct a template graph. All template graphs are stored globally in a template
map that maps the name of a function to its template graph. We also have a reduction
graph where graph reduction is performed. Free variables in both the template graphs
and the reduction graph refer to templates in the template map. If a function is to be
applied to a sequence of arguments, we look up the template graph for the function, and
instantiate the template by copying the template while substituting bound variables by
the function arguments.

Template instantiation requires that all expressions are supercombinators. A supercom-
binator of arity n is an expression of the form λx1.λx2. . . . λxn.E where E is not a
lambda abstraction, E does not contain free variables except free variables that refer to
supercombinators, and any lambda abstraction in E is a supercombinator. Intuitively,
a supercombinator does not contain locally defined functions that contain variables that
are free in this locally defined function. For example, λx.(x+ ((λy . x+ y) x)) is not a
supercombinator, as y is a free variable in the innermost lambda-abstraction.

If we would allow non-supercombinator expressions in the template instantiation ap-
proach, a template may contain another template in its body, i.e. a local function.
If the outermost template is instantiated, the innermost template will only be partly

40

5.3. Adaptations for Dynamic Bindings

instantiated, leaving bound variables in the reduction graph. If we only allow supercom-
binators, we do not have this problem.

All expressions can be transformed into supercombinators through a process called
lambda lifting [33]. The basic idea of lambda-lifting is that non-supercombinator lambda-
abstractions are ’lifted’ to the supercombinator level by introducing additional bindings
for their free variables. E.g. in λx.(x + λy.(x + y)), the expression λy.(x + y) can
be lambda-lifted to obtain the supercombinator λy.λx.(x + y). The implementation of
lambda-lifting is outside the scope of this thesis, and we assume that all expressions
are already in supercombinator form. This is syntactically enforced by our prototype
language, as the grammar does not support locally defined functions.

A special kind of supercombinator is a constant applicative form (CAF) supercombinator,
which is a supercombinator that does not have any parameters. The template of a
CAF supercombinator must not be copied like a non-CAF supercombinator, as they
are already in their instantiated form. This means that in our implementation, we
have to treat CAF supercombinators differently from supercombinators that do have
parameters.

Finally, graph reduction in template instantiation is performed by repeatedly finding
the next redex to reduce, reducing the redex, and then overwriting the root of the redex
with the reduced result. In order to implement lazy evaluation we use outermost reduc-
tion, which corresponds to reducing towards weak head normal form. We discuss the
implementation of graph reduction in more detail in the remainder of this chapter.

5.3. Adaptations for Dynamic Bindings

Before we discuss the implementation of our graph reducer, we discuss some modi-
fications to standard template instantiation to allow bindings to be created dynami-
cally.

As discussed in the previous section, in regular template instantiation we maintain a
template map. If we want to add bindings dynamically, we have to add new templates
to the template map. Additionally, bindings may become obsolete and may have to be
removed from the template map to reclaim memory. One problem here is that we have
to be make sure that every supercombinator has a unique name in the template map.
Another problem is that we need a way to find out if a template is no longer used, so
that the system can reclaim its memory.

Instead of maintaining a template map, we statically resolve all free variables by replacing
them with a pointer to the corresponding template. In doing this, we can drop the
template map altogether. Templates are now anonymous, so we do not have to give
them unique names. Also, when templates are not refered to anymore, they can be
automatically garbage collected by the runtime. Using this modification, we essentially
obtain a single graph containing both the templates as well as the reduction graph. An

41

5. Graph Reduction for Transaction Processing

additional advantage of resolving variables statically is that we do not have to perform
a lookup every time we instantiate a template.

Additionally, in normal template instantiation there is a single root node into the re-
duction graph. However, for our transaction processing language, we keep track of
multiple pointers into the reduction graph, corresponding to the different bindings in
the state.

A non-CAF supercombinator template in our implementation starts with a special su-
percombinator node, as discussed in the next section. During the instantiation of a
supercombinator template, if we encounter such a supercombinator node, we know that
a non-CAF template starts and the current template ends. Supercombinators that are
CAF’s do not begin with a supercombinator node, as that would require that they are
part of a redex, which is not the case. In order to know that a template ends in such a
case, we insert a special symbol node that marks the end of a template when we resolve
a free variable that refers to a CAF supercombinator.

5.4. Implementation Overview

Now we provide an overview of our implementation. We dicuss the data structures that
we use, and we provide a global overview of the procedures that we use for reducing
graphs built from these data structures.

Data Structures

1 data Node = // Lambda Calculus

2 SuperCombinator(template : Node)

3 | BoundVariable(index : Integer)

4 | FreeVariable(id : String)

5 | Symbol(binding : Node)

6 | Application(function : Node, arguments : Node[])

7 // Sharing

8 | Sharing(shared : Node)

9 // Structured data

10 | Data(constructor : String)

11 | Case(cases : Map String Node)

12 // Primitives

13 | Int(value : Integer)

14 | Double(value : Double)

15 | Add(left : Node, right : Node)

16 | Sub(left : Node, right : Node)

17 | ...

18
19 type Environment = Map String Node

Listing 5.1: Data Structures for our graph reducer.

42

5.4. Implementation Overview

Listing 5.1 shows an overview of the data structures that we use to represent graphs. In
the paragraphs below, we discuss these data structures in more detail.

A supercombinator node represents a lambda-abstraction of the form λx1.λxn.E
where the template of the supercombinator node corresponds to the expression E. A
template is built from the same nodes as that we use for graph reduction. We do
not keep track of the number of arguments in a supercombinator node, as we do not
support partial function application. In our implementation, a supercombinator node is
essentially a primitive function.

A bound variables is represented by a bound variable node. We use de-bruijn indices [10]
instead of named variables, such that a variable with index n refers to the nth parameter
of its enclosing supercombinator. When a supercombinator is instantiated, an array of
arguments is passed where the ith element corresponds to the ith argument of the
supercombinator. Bound variables only occur in template graphs, as they are resolved
during instantiation of a template.

A free variable is represented by a free variable node, which has a name that refers to a
binding in the state. Free variables only occur during compile-time, as they are resolved
before reduction. If a free variable resolves to a CAF supercombinator, it is replaced by a
symbol node that refers to the appropriate CAF template, thereby marking the boundary
of the supercombinator template that the free variable is part of. If a free variable resolves
to a non-CAF template, no symbol node is inserted, as the supercombinator root node
of the referred template marks the boundary of the enclosing template.

An application in the λ-calculus is represented by an application node, which consist of
a primitive function and an array of argument nodes. An application node marks the
start of a redex, where the second part of the redex consists of the primitive function
of the application node, such as a supercombinator node, a case node or a primitive
arithmetic function.

One of the key features of graph rewriting is that we can overwrite the root of a redex
with its result. However, Java does not allow us to physically overwrite a node, i.e.
replace a node instance by another node instance. To solve this, we use a special sharing
node that has a pointer that either points to a redex, or the weak head normal form of
that redex. Reducing a sharing node to weak head normal form consists of reducing the
shared node to weak head normal form, and then updating the pointer of the sharing
node to point to the result. If the node is visited a second time, the already reduced
result is used instead of reducing the result again. In our implementation we insert a
sharing node before every application node, i.e. before every redex.

Structured data is implemented through data nodes and case nodes. A data node repre-
sents a data constructor function, and holds the name of the constructor together with
an array of child nodes. A case node is a primitive function that performs a case dis-
tinction on the constructor of a data node by selecting one of the alternative cases based
on the constructor of a data node applied to it.

43

5. Graph Reduction for Transaction Processing

Primitive data types are implemented as nodes that box a primitive value. Our im-
plementation supports integers, doubles and strings. Primitive operations on primitive
data types are implemented as primitive function nodes, including arithmetic functions
and comparison functions.

Finally, we have a data type Environment that maps names to templates in the reduction
graph, to keep track of bindings. As discussed in section 5.3, if the binding is a non-CAF
supercombinator, then the root node of the template is a supercombinator node, and
if the binding is a CAF supercombinator, then the root node of the template is not a
supercombinator node.

Procedures

Now that we have seen the data structures that we use to represent graphs, we can
discuss the procedures to implement graph reduction. Our implementation consists of
the following procedures:

resolve : Environment → Environment → Environment
Resolves the free variables in an environment to obtain an environment where all
pointers to free variables in all expressions have been replaced by pointers to their
respective template. This procedure also accepts an environment of additional
bindings that can be bound to the first environment.

whnf : Node → Node
Reduces a node to weak head normal form, thereby implementing lazy graph re-
duction.

apply : Node × Node[] → Node
Invokes a primitive function given an array of arguments.

instantiate : Node × Node[] → Node
Instantiates a given node that is part of a supercombinator template, the array
of arguments corresponds to the parameters with which the supercombinator is
invoked, and which are to substitute the bound variables in the template.

nf : Node → Node
Reduces a graph to normal form by repeatedly finding the next redex in the input
graph and reducing it to weak head normal form.

In the following sections, we discuss the implementation of these procedures in the order
as shown here.

5.5. Resolving Free Variables

First, we discuss our algorithm for resolving free variables in an environment of super-
combinators, which is implemented in the resolve procedure.

A pointer to a free variables is resolved by replacing it with a pointer to the resolved
version of the supercombinator corresponding to the free variable. We want to resolve

44

5.5. Resolving Free Variables

templates non-destructively, as to keep the template that is being resolved intact, which
is required to re-use templates in stored transactions.

The basic idea of our algorithm is that we copy the original template, while replacing
pointers to free variables by pointers to their corresponding resolved supercombinator
nodes.

1 resolve(FreeVariable(id) : Node, bindings : Environment) : Node {

2 binding ← bindings.get(id);

3 if(binding = null) {

4 return this;

5 } else if(binding : Node.SuperCombinator) {

6 return binding;

7 } else {

8 return new Symbol(binding);

9 }

10 }

Listing 5.2: Resolving free variables.

Listing 5.2 shows the implementation of resolve for free variable nodes. The binding
environment contains the resolved versions of the supercombinators that free variables
may refer to. We look up the binding for the free variable node in the provided environ-
ment. If there is no binding, we can not resolve yet, and we return the free variable node
itself. If there is a binding that is a supercombinator node, then we have a non-CAF
node, and we return that node. Otherwise the binding is a CAF supercombinator, and
we create a symbol node that refers to the binding.

1 resolve(Application(function, arguments),

2 bindings : Environment) : Node {

3 resolved_arguments ← new Node[arguments.length];

4 for(i ← 0; i < arguments.length; i ← i + 1) {

5 resolved_arguments[i] ← resolve(arguments[i]);

6 }

7 return new Application(

8 resolve(function),

9 resolved_arguments

10);

11 }

Listing 5.3: Resolving application variables nodes.

Listing 5.3 shows the implementation of resolve for application nodes. We resolve
the function and arguments of the application node, and we use these to build a new
application node as the result. For other nodes resolving is done similar to the application
node. That is by constructing a copy of the node where its child nodes have been
resolved.

45

5. Graph Reduction for Transaction Processing

One complication in the use of this algorithm is the construction of the binding environ-
ment. A supercombinator body may recursively refer to itself, and we can not resolve
a supercombinator without having a resolved version of itself available. Our solution
to this problem is to copy the root nodes of the supercombinators, and construct an
environment of these copies. We then resolve all templates using this environment of
copied root nodes. After resolving we update the copied root nodes in-place to match
the resolved version.

1 resolve(bindings : Environment, additional : Environment) : Node {

2 result ← new Environment<String, Node>();

3 // Copy roots

4 for((name, node) ∈ bindings) {

5 result.put(name, copy(node));

6 }

7 // Resolve free-variable-only supercombinators

8 for((name, node) ∈ bindings) {

9 seen ← {};
10 while(node is FreeVariable) {

11 if(node.id ∈ seen) {

12 throw new Exception("Cyclic reference");

13 }

14 seen ← seen ∪ { node.id };
15 if(result.contains(node.id)) {

16 node ← result.get(node.id);

17 } else {

18 node ← additional.get(node.id);

19 }

20 }

21 for(id ∈ seen) {

22 result.put(id, node);

23 }

24 }

25 // Update copied roots by their resolved variant

26 for(name ∈ bindings.keySet()) {

27 node ← result.get(name);

28 update(node, node.resolve(result ∪ additional));

29 }

30 return result;

31 }

Listing 5.4: Resolving free variables in an environment.

There is one special case we have to handle in this approach: a CAF supercombinator
that has a free variable as its root node. A free variable gets replaced by a pointer to a
supercombinator, and we can not update a copy of it to reflect this change. To handle this

46

5.6. Weak Head Normal Form Reduction

case, we resolve such free variables before resolving any other supercombinators.

An additional complication is that such a free-variable-only supercombinator (FVO) may
refer to another FVO. This implies that there may be a cycle of FVO’s. We can handle
this by following the path of FVO’s until we find a supercombinator that does not have
a free variable as its root node. We can then resolve all these FVO’s by pointing them to
the the non-FVO node. When implementing this, we have to be careful, as there might
be a cycle of FVO’s. To detect such cycles, we can remember the FVO’s that we have
already seen, and terminate when we detect that we have visited an FVO twice.

Listing 5.4 shows the algorithm for resolving environments, incorporating the solutions
we have discussed above. The copy procedure only copies the root node of the expression,
i.e. a shallow copy is performed. The update procedure updates a node by copying
values of the fields from the node passed to it. As an example, Listing 5.5 shows how an
application node is updated. This algorithm also allows an environment of additional
bindings additional to be bound, which is needed for transaction processing to bind
free variables in a transaction to state variables.

1 update(Application(dst_fun, dst_arg) : Node,

2 Application(src_fun, src_arg : Node) : Void {

3 dst_fun ← src_fun;

4 dst_arg ← src_arg;

5 }

Listing 5.5: Updating a node.

The result of the execution of this algorithm is that we have an environment of supercom-
binators that do not contain free variables. Essentially, all entries of this environment
map are roots into a single graph.

5.6. Weak Head Normal Form Reduction

We now discuss the reduction of redexes to weak head normal form (WHNF). As dis-
cussed earlier, WHNF reduction corresponds to lazy evaluation of functional expressions.
We use WHNF reduction in order to implement normal form reduction, as is discussed
in the next section.

The implementation consists of three parts: the whnf procedure, which is called to reduce
a node to weak head normal form, the apply procedure, which is called by the whnf

procedure when applied to a application node to invoke a primitive function, and finally
the instantiate procedure, which is called by the whnf procedure when applied to a
supercombinator node to instantiate a template. We discuss the implementation of these
procedures in sequence. In these algorithms we assume that the executed program is
well-typed, so that we do not have to handle type errors during execution.

47

5. Graph Reduction for Transaction Processing

1 whnf(Application(function, arguments) : Node) : Node {

2 return whnf(apply(whnf(function), arguments));

3 }

4
5 whnf(Sharing(shared) : Node) : Node {

6 shared ← whnf(shared);

7 return shared;

8 }

9
10 whnf(node : Node) : Node {

11 return node;

12 }

Listing 5.6: The whnf procedure.

Listing 5.6 shows the implementation of the whnf procedure. There are only three cases
to be handled. If we encounter an application node, then we have found a redex; we
reduce the function component of the application node, invoke the apply procedure to
execute the primitive function, and reduce the result of apply to weak head normal form.
The arguments are not reduced in the application node, as they are evaluated lazily. If
we encounter a sharing node, we reduce the shared node, and store the reduction result
so that the next time we encounter this node we do not have to reduce the shared node
again. All other node types are already in weak head normal form, so we can just return
the node itself as the result.

1 apply(SuperCombinator(template) : Node, arguments : Node[]) : Node {

2 return instantiate(template, arguments);

3 }

4
5 apply(Symbol(binding) : Node, arguments : Node[]) : Node {

6 return apply(binding, arguments);

7 }

8
9 apply(Sharing(shared) : Node, arguments : Node[]) : Node {

10 return apply(shared, arguments);

11 }

12
13 apply(Case(cases) : Node, arguments : Node[]) : Node {

14 return cases(whnf(arguments[0]).constructor);

15 }

16
17 apply(application : Node.Application, arguments : Node[]) : Node {

18 return apply(whnf(application), arguments);

19 }

48

5.6. Weak Head Normal Form Reduction

20 apply(Add : Node, arguments : Node[]) : Node {

21 return new Int(

22 whnf(arguments[0]).value +

23 whnf(arguments[1]).value

24);

25 }

Listing 5.7: The apply procedure.

Listing 5.7 shows the implementation of the apply procedure, which is invoked by the
application node. For a supercombinator node, we instantiate its template using the
instantiate procedure, passing the arguments as template parameters. For a symbol
node, we propagate the application to the bound node. Similarly, for a sharing node
we propagate the application to the shared node, we can assume that the shared node
has already been reduced because apply is only called from an application node, which
first reduces the function node before calling it. For a case node, we eagerly evaluate
the first argument to obtain a data node, and return the corresponding case from the
cases mapping. If we encounter an application node then we have found a redex that
must be reduced first before reducing the original application node, so we call whnf on
this redex, and then propagate apply to the reduced result of that redex. Finally, for
a primitive addition node, we reduce both operands to obtain two integer nodes, we
unbox the integers, then we perform the addition natively and box the result to obtain
an integer node as the final result.

Finally, listing 5.8 shows the implementation of the instantiate procedure for some
nodes. The essential idea is that we copy the template, substituting bound variables
by their corresponding argument. Instantiation is terminated when we encounter the
boundary of the supercombinator, which is the case if we encounter a supercombinator
node or a symbol node.

1 instantiate(sc : Node.SuperCombinator, arguments : Node[]) : Node {

2 return sc;

3 }

4
5 instantiate(Symbol(binding) : Node, arguments : Node[]) : Node {

6 return binding;

7 }

8
9 instantiate(BoundVariable(index) : Node, arguments : Node[]) : Node {

10 return arguments[index];

11 }

49

5. Graph Reduction for Transaction Processing

12 instantiate(Sharing(shared) : Node) : Node {

13 return new Sharing(instantiate(shared));

14 }

15
16 instantiate(Application(function, app_args) : Node,

17 arguments : Node[]) : Node {

18 ia ← new Node[arguments.length];

19 for(i ← 0; i < arguments.length; i ← i + 1) {

20 ia[i] ← instantiate(app_args[i], arguments);

21 }

22 return new Application(

23 instantiate(function, arguments),

24 ia

25);

26 }

Listing 5.8: The instantiate procedure.

5.7. Normal Form Reduction

In the previous section we discussed reduction to weak head normal form. We now use
this to implement normal form reduction. Normal form reduction is used in our prototype
to reduce the result expressions of transactions. We also use normal form reduction for
reducing states to normal form, so that we can create a consistent snapshot of the state
as is discussed in Chapter 8.

1 nf(root : Node) : Node {

2 nf_root ← whnf(root);

3 if(nf_root is Data) {

4 // Construct an array to store the reduced children

5 reduced_children ← new Node[nf_root.children.length];

6 // Reduce children to normal form

7 for(i ← 0; i < nf_root.children.length; i ← i + 1) {

8 reduced_children[i] ← nf(nf_root.children[i]);

9 }

10 // Construct a new data node

11 nf_root ← new DataNode(

12 nf_root.constructor,

13 reduced_children

14);

15 }

16 return nf_root;

17 }

Listing 5.9: Normal form reduction algorithm.

50

5.8. Conclusions

Listing 5.9 shows the implementation of the nf procedure for normal form reduction of
graphs. Given the root of the graph to be reduced, we first reduce the root to WHNF
using whnf. There is actually only one case where whnf does not return a result in
normal form, that is when it returns a data node. To reduce such a data node to normal
form, we recursively reduce its children to normal form using nf, and construct a new
data node as the result.

5.8. Conclusions

In this chapter we have seen the implementation of a graph reducer that has been
modified for transaction processing. In particular, we have seen:

• Template instantiation as a method for implementing graph reduction.
• An adaptation to standard template instantiation to allow bindings to be created
and removed dynamically.

• Data structures for our implementation of graph reduction.
• An algorithm for resolving free variables statically.
• Algorithms for lazy graph reduction.
• An algorithm for reduction of graphs to normal forms.

The graph reducer as discussed in this chapter provides a good basis for the implemen-
tation of a transactional functional language. Using this graph reducer, we can already
execute updates to the state concurrently due to lazy evaluation of states. In Chapter 6
we adapt the graph reducer to correctly handle concurrent graph reduction, as well as
proving a load balancing mechanism to enable parallel graph reduction. In Chapter 7
we use the procedures as described in this chapter to implement a transaction manager
for a transactional functional language.

51

6. Parallel Graph Reduction by
Randomisation and Sharing Results

The graph reducer as discussed in the previous chapter already provides a good basis for
the implementation of a transactional functional language, and it even allows concurrent
execution of update transactions by reducing states lazily. If we want to execute read
transactions concurrently, multiple threads may reduce the same state graph concur-
rently. We need to adapt our serial graph reducer to allow concurrent reduction, by
ensuring that results are correctly shared between threads.

We can also develop this method further by incorporating load balancing to enable
parallel graph reduction. Load balancing tasks among available hardware resources is
the main challenge in parallel graph reduction, because tasks are very fine grained and
we do not want to consume too many resources to do load balancing. Our method of
load balancing is based on randomising the reduction order of reduction threads. This
method is different from methods found in the literature, which are commonly based on
a work-stealing approach [35].

In this chapter, we first discuss some preliminaries about concurrent programming. We
then describe the idea of randomisation and result sharing in an abstract setting. Next,
we apply this abstract model to graph reduction, and provide a short overview of the
implementation. We then describe the implementation of result sharing and randomisa-
tion for weak head normal reduction. Finally, we describe the implementation of result
sharing and randomisation for normal form reduction.

6.1. Preliminaries

To start out, we discuss some preliminaries about concurrent programming. First we
discuss concurrency and parallelism, then we discuss threads as a method to introduce
concurrency into programs, and then we discuss concurrent operations on shared mem-
ory.

To distinguish between concurrency and parallelism, we follow the definitions by Ben-
Ari [6]. We say that tasks can be performed concurrently if multiple tasks can make
progress at the same time. Tasks are performed in parallel if multiple tasks are actually
making progress at the same time. The purpose of concurrency is to ensure that tasks
can complete without depending on the completion of another task. The purpose of
parallelism is to execute a set of tasks faster by executing multiple tasks at the same

53

6. Parallel Graph Reduction by Randomisation and Sharing Results

time using parallel hardware. In the context of transaction processing, our primary aim
is to execute transactions concurrency, as we want to be able to execute a transaction
without depending on the completion of previously executed transactions. However,
being able to execute transactions in parallel is also beneficial, as it improves the overall
performance of the system.

A sequential program can introduce concurrency through threads. Each thread maintains
its own instruction pointer and call stack, and may be executed independently of other
threads. Multiple threads can be executed concurrently by either interleaving their
execution, or by executing them in parallel using parallel hardware. Which of these
methods is chosen depends on the operating system and the hardware on which the
program runs.

All threads of a program work concurrently on the same shared memory. In order to
reason about concurrent access to shared memory, we assume that all operations on
shared memory are atomic. We also assume the existence of an atomic compare-and-set
operation compareAndSet(l, c, s) that atomically executes:

if l = c then l ← s.

Additionally, modern hardware may perform instruction reordering to optimise the per-
formance of a program, however the algorithms presented in this thesis assume that
there is no instruction reordering.

6.2. Parallelism in Functional Languages

As we have discussed in Chapter 2, functional programs are inherently parallel. However,
in practice it is hard to take advantage of the implicit parallism in functional programs.
In this section we provide a short overview of the problems in parallelising functional
programs.

One problem is that reduction tasks have to be load balanced among the available
processors. A common approach to load balancing in parallel graph reduction is work
stealing [35]. In this approach, every execution thread maintains a work pool. If an
execution thread does not have any more work to perform, it may ’steal’ a task from the
work pool of another execution thread. A problem in this approach is that a functional
program may contain such a high amount of parallelism that load balancing produces
a large amount of overhead, which may slow the system down instead of speeding it
up [20]. A common solution to solve this problem is to limit the amount of parallelism in
a functional program. This can be done by annotate parts of the program to introduce
parallelism explicitly instead of using the inherit parallelism of a functional program.
However, a problem in this approach is that it is hard to determine which parts to
annotate for optimal performance.

Another problem is that lazy evaluation forces a parallel functional program to be se-
quentially executed [37]. Again, a solution to this problem is to annotate programs

54

6.3. Randomisation and Result Sharing

to explicitly, however now the goal is to increase parallelism instead of reducing paral-
lelism [24].

In the remainder of this chapter we discuss our load balancing method. Our approach
focuses on the issue of load balancing, and not on the problems caused by laziness.

6.3. Randomisation and Result Sharing

In this section we discuss randomisation and result sharing as a method for load balancing
in an abstract setting.

Assume that we have some tree where nodes represent deterministic tasks which execu-
tion produces as a result a value. Each tasks depends on the results of the tasks below
it in the tree, and the main goal is to execute the task at the root of the tree. In order
to execute all tasks, a thread can make a depth first walk along all tasks in the tree, and
perform a task as it is about to move up from a node to its parent node. I.e. the order
of executing the tasks corresponds to a postorder depth-first traversal of the tree.

We can parallelise the work among multiple threads by making each thread take a
different walk through the graph, i.e. randomising their execution paths. Once a thread
has computed the result of a task, it stores the result of the task so that other threads
can see the result. If a thread comes across a task for which a result has already been
computed by another thread, it uses that result instead of computing the result itself.
That is, threads share results between each another.

Using this method, multiple threads may be working on the same task at the same time.
As threads only communicate through result sharing, we have to assume that executing
one tasks concurrently by multiple threads presents no problems. Each thread produces
its own result, which are all identical because tasks are deterministic. In the end only
one of these result is needed, so when we have multiple results, all but one of them is
discarded. This means that task execution is a speculative operation, as there might be
other threads that are executing the same task at the same time, making the work of
all but one of them redundant. This means that if the threads are not balanced well
over the tree, there may be a high amount of overhead due to redundant task execution.
This also implies that this method may not work well for trees that are very skewed or
have only one branch at every node.

The idea of randomisation and result sharing for load balancing of work in parallel
systems is not new, and has already been applied successfully in the context of model
checking for the parallel exploration of a state-space [16], however to our knowledge this
method has not yet been applied to graph reduction.

6.4. Randomisation and Result Sharing for Graph Reduction

Now we discuss how randomisation and result sharing can be applied to graph reduction,
and how this can be implemented. As a starting point for the implementation we use

55

6. Parallel Graph Reduction by Randomisation and Sharing Results

the graph reducer as discussed in Chapter 5.

We start out by mapping concepts in graph reduction to concepts in the abstract model
for randomisation and result sharing as described in the previous section. First, we
observe that redexes correspond to tasks, and the goal of graph reduction is to find the
normal form or weak head normal form of the root redex of the graph. The abstract
model assumes that concurrent execution of one task by multiple threads presents no
problems. For our serial graph reducer this is indeed the case, as the graph being reduced
is immutable because each the reduction of a redex produces a result graph without
modifying the existing graph (with the exception of result sharing, as we discuss in a
moment).

The walk performed by a reduction thread under lazy evaluation depends on the order
in which it reduces redexes on which the reduction of another redex depends. A redex
depends on another redex if it requires the result of the other redex in order to be
reduced. This is the case for functions that are strict in their arguments, i.e. functions
that require evaluation of their arguments. An example of a strict function is primitive
addition, if we want to reduce a+ b, we first have to reduce a and b beforce being able
to perform the addition itself. This means that randomisation of walks through the tree
can be performed by randomising the choice of which argument to reduce first when
applying strict functions. We discuss how this can be implemented in Section 6.6.

The concept of sharing results is already a part of graph reduction, as redexes are
replaced by their results in the graph reduction model. In our current graph reducer,
sharing nodes are used for this purpose. However, our sharing node implementation so
far is not suitable for concurrent reduction. In the next section we discuss why this is,
and we provide a solution.

6.5. Result Sharing in Weak Head Normal Form Reduction

In this section we discuss the sharing of results between reduction threads. As a starting
point for sharing results between threads, we take the result sharing nodes that we have
introduced in our serial graph reducer as discussed in Chapter 5. We modify the whnf
procedure for this node to allow correct sharing between threads.

1 whnf(Sharing(shared) : Node) : Node {

2 shared ← whnf(shared);

3 return shared;

4 }

Listing 6.1: Serial graph reduction result sharing.

Consider the procedure for reducing a sharing node to weak head normal in Listing 6.1,
as discussed in Chapter 5. If this procedure is executed by one thread, and later another
thread executes it, the second thread uses the result produced by the first thread, thereby
effectively sharing results between threads. However, if two threads where to invoke this
procedure concurrently on the same sharing node, what may happen then?

56

6.5. Result Sharing in Weak Head Normal Form Reduction

Let us look at a sample execution. Thread t1 computes whnf(node.shared) to obtain
some result r1, and another thread t2 concurrently computes whnf(node.shared) and
obtains the result r2. Now t1 updates the sharing node and returns r1 as the result, and
t2 updates the sharing node and returns r2 as the result. So, there are now two results
r1 and r2 which are equivalent, but which are not shared.

While the result of each thread is correct, this example demonstrates that a loss of
sharing occurs when two threads reduce a redex simultaneously. This loss of sharing has
two effects on the execution of a program. One effect is that memory is wasted due to
two equivalent results being used by two threads. Another more serious problem occurs
when sharing is lost on a redex. First, computational time is wasted as two threads have
to reduce this redex separately, and second the result produced by these two threads,
while equivalent, will also not be shared. This may lead to a large computation being
executed by two threads separately.

In order to maintain sharing, we have to ensure that each thread that calls the whnf

procedure on a sharing node produces not only the same result, but we also have to
ensure that the result is shared between the threads. The following algorithm ensures
this (however, it is still not completely correct, as we discuss later):

1 whnf(Sharing(shared) : Node) : Node {

2 local ← shared;

3 reduced ← whnf(local);

4 if(local �= reduced) {

5 compareAndSet(shared, local, reduced);

6 return shared;

7 } else {

8 return local;

9 }

10 }

Listing 6.2: Maintaining sharing in whnf for sharing nodes.

This procedure first fetches the shared node from the sharing node and stores it in local
so that it is thread local. It then reduces local, to obtain its weak head normal form,
which is stored in reduced. Now, if reduced = local, then local is already in weak
head normal form, and we can return it as the result of the procedure. If reduced �=
local we have actually performed a reduction, and we use compareAndSet to atomically
set node.shared to reduced only if node.shared = local. If this operation succeeds
then node.shared contains reduced. If the compare and set fails, then another thread
must have updated node.shared with its result, so node.shared contains the result we
want to use, as to maintain sharing. The uniqueness of the result is thus guaranteed by
this algorithm.

As already mentioned, there is still a problem with this algorithm, which appears in
conjunction with the whnf algorithm for application nodes. Consider the algorithm for

57

6. Parallel Graph Reduction by Randomisation and Sharing Results

weak head normal reduction of application nodes as discussed in Chapter 5:

1 whnf(Application(function, arguments) : Node) : Node {

2 return whnf(apply(whnf(function), arguments));

3 }

Listing 6.3: Implementation of whnf in serial graph reduction.

The expression apply(whnf(node.function), node.arguments) may create a new re-
dex, for example if whnf(node.function) returns a supercombinator node. If two
threads invoke the whnf procedure on an application node concurrently, two redexes are
actually created. In order to maintain sharing, these redexes must be shared, but in our
current algorithm they are not. Sharing of the final result will still be maintained by
a parent sharing node, so the final result will be shared, but we still have the issue of
duplicate computation in the intermediate computation.

The solution to this problem is to not perform the weak head normal form reduction of
the redex in the application node, but to do this in the sharing node, as to share inter-
mediate results. For this, we introduce an additional procedure reduce that performs a
minimal reduction step towards weak head normal form. The implementation of reduce
is as follows:

1 reduce(Application(function, arguments) : Application) : Node {

2 return apply(whnf(function), arguments);

3 }

4
5 reduce(node : Node) : Node {

6 return whnf(node);

7 }

Listing 6.4: Implementation of the reduce procedure.

The only difference from the whnf procedure for application nodes is that we do not per-
form a tail-recursive call to whnf. If reduce creates a redex, it is passed to the procedure
that invoked reduce. In general, if the whnf procedure performs a tail-recursive call to
whnf, then the reduce procedure can be constructed by taking the whnf procedure and
ommitting this tail-recursive call. For all other nodes, reduce can simply return the
weak head normal form of the node using the whnf procedure.

Using the reduce procedure, we can now update the whnf procedure for sharing nodes,
to share intermediate results between threads, as shown in Listing 6.5. This algorithm
differs from the previous in that we now perform multiple reduction steps to obtain a
weak head normal form, while sharing intermediate results with other threads. If the
compare and set operation succeeds then node.shared contains reduced and we can
continue reduction with that value. If the compare and set fails, then another thread
must have updated node.shared with a reduced form of local, and to maintain sharing
we continue reduction with that value instead.

58

6.6. Randomisation in Weak Head Normal Form Reduction

1 whnf(Sharing(shared) : Sharing) : Node {

2 local ← shared;

3 reduced ← reduce(local);

4 while(local �= reduced) {

5 if(compareAndSet(shared, local, reduced)) {

6 local ← reduced;

7 } else {

8 local ← shared;

9 }

10 reduced ← reduce(local);

11 }

12 return local;

Listing 6.5: Maintaining intermediate result sharing.

Again, this procedure guarantees the uniqueness of the final result. Also, this algorithm is
guaranteed to terminate if reduction of the shared node terminates. There is always one
thread that succeeds in reducing the shared node by one step and updating node.shared.
Any other threads will fail to update node.shared with their result using compare and
set, and they will continue using the result from the thread that succeeded. Therefor,
there is always at least one thread that makes progress towards reducing the shared
node.

Using the result sharing algorithms as discussed in this section, we can reduce a graph
concurrently using multiple threads, and be ensured that if multiple threads reduce the
same redex, they obtain a shared result.

6.6. Randomisation in Weak Head Normal Form Reduction

We now discuss randomisation of the execution paths of threads so that we can distribute
work among available hardware threads, enabling parallel graph reduction.

In our current graph reducer, the points where a thread has a choice in the order of
reduction of redexes is in the apply function for primitive functions that are strict.
Consider for example the implementation of apply for primitive addition:

1 apply(Add : Node, arguments : Node[]) : Node {

2 return new Int(

3 whnf(arguments[0]).value +

4 whnf(arguments[1]).value

5);

6 }

Listing 6.6: Implementation of the addition node.

59

6. Parallel Graph Reduction by Randomisation and Sharing Results

In our current implementation, each thread first reduces argument[0], followed by
argument[1]. In order to randomise this, threads must somehow make different deci-
sions on which argument to reduce first. With two arguments we only have two possible
orderings, so we can make a decision based on a boolean value whether to reduce from
left to right, or from right to left. This gives us the following algorithm, where we have
to fill in the dots to make a decision about whether to reduce from left to right, or from
right to left:

1 apply(Add : Node, arguments : Node[]) : Node {

2 left_to_right = ...;

3 if(left_to_right) {

4 l ← whnf(arguments[0]);

5 r ← whnf(arguments[1]);

6 } else {

7 r ← whnf(arguments[1]);

8 l ← whnf(arguments[0]);

9 }

10
11 return new Int(l.value + r.value);

12 }

Listing 6.7: Ordering in the addition node.

There are different strategies we could use to make a decision about reduction order in
the example above. One strategy is the use of a thread local psuedo-random number
generator to generate random values for each thread. However, we could also attempt
to distribute threads somewhat evenly among the left and right branch by alternating
the reduction order of threads visiting a node.

1 data Node = ...

2 | Add(left_to_right : Boolean)

3 | ...

4
5 apply(Add(left_to_right) : Node, arguments : Node[]) : Node {

6 if(negateAndGet(left_to_right)) {

7 l ← whnf(arguments[0]);

8 r ← whnf(arguments[1]);

9 } else {

10 r ← whnf(arguments[1]);

11 l ← whnf(arguments[0]);

12 }

13
14 return new Int(l.value + r.value);

15 }

Listing 6.8: Randomisation in the addition node.

60

6.6. Randomisation in Weak Head Normal Form Reduction

For our prototype implementation, we have chosen to randomise the order of threads by
attempting to distribute them evenly among branches. This is implemented by adding
a boolean flag to a primitive function node, and every time this node is visited, the
flag is negated. The algorithm in Listing 6.8 shows the implementation of this for the
primitive addition function. We assume the existence of a procedure negateAndGet that
atomically negates and gets the passed argument.

In order for this method to work well in practice, we have to ensure that each application
node has its own Add node instead of using a singleton Add node. If we would use a
singleton node, there will be a lot of communication overhead between hardware due to
contention for a single cache line.

Additionally, we could perform the negation of left to right non-atomically, as in
practice this is quite an expensive operation. By doing this, there is a data race [27]
when negating the left to right node, as it is not an atomic operation. In practice this
means that multiple threads may choose the same branch, where they would otherwise
distribute evenly among branches. Correctness of the result and sharing are not affected
when doing this, only the distribution of threads in the graph is affected. In practice
there is a high probability that there is a good distribution of threads. As the goal of
parallel graph reduction is to maximise performance, using a slow atomic operation here
may not be the best option.

1 nf(root : Node) : Node {

2 nf_root ← whnf(root);

3 if(nf_root is Data) {

4 // Construct an array to store the reduced children

5 reduced_children ← new Node[nf_root.children.length];

6 // Reduce children to normal form

7 for(i ← 0; i < nf_root.children.length; i ← i + 1) {

8 reduced_children[i] ← nf(nf_root.children[i]);

9 }

10 // Construct a new data node

11 nf_root ← new DataNode(

12 nf_root.constructor,

13 reduced_children

14);

15 }

16 return nf_root;

17 }

Listing 6.9: Normal form reduction algorithm.

61

6. Parallel Graph Reduction by Randomisation and Sharing Results

6.7. Result Sharing and Randomisation in Normal Form
Reduction

Our final topic of this chapter is result sharing between threads and randomisation in
normal form reduction. This can be used when reducing results of transactions to normal
form using multiple threads, or for parallel reduction of the state to normal form.

Let us assume that we use the nf procedure shown, as discussed in Chapter 5, and
invoke it with multiple threads on the same node. The problem with this procedure
in a concurrent setting is that each thread produces its own structure of Data nodes,
meaning that there is no result sharing.

1 data Node = ...

2 | Data(constructor : String, children : Node[],

3 left_to_right : Boolean, is_nf : Boolean)

4 | ...

5
6 nf(root : Node) : Node {

7 whnf_root ← whnf(root);

8 if(whnf_root is DataNode ∧ whnf_root.is_nf = false) {

9 // Reduce children to normal form

10 left_to_right ← ¬left_to_right;
11 if(left_to_right) {

12 for(i ← 0; i < whnf_root.children.length; i ← i + 1) {

13 current ← whnf_root.children[i];

14 current_nf ← nf(current);

15 compareAndSet(whnf_root.children[i], current, current_nf);

16 }

17 } else {

18 for(i ← whnf_root.children.length - 1; i ≥ 0; i ← i - 1) {

19 current ← whnf_root.children[i];

20 current_nf ← nf(current);

21 compareAndSet(whnf_root.children[i], current, current_nf);

22 }

23 }

24 // Mark data node as being in normal form

25 whnf_root.is_nf ← true;

26 }

27 return whnf_root;

28 }

Listing 6.10: The nf procedure with result sharing and randomisation.

In order to introduce sharing, we use the Data nodes themselves as sharing nodes by
updating them instead of constructing new data nodes during reduction. This has the

62

6.8. Conclusions

additional benefit of cleaning up sharing nodes in the graph which result has already
been reduced to normal form. A problem now is, how do we know if a data node is in
normal form? For weak head normal form reduction, we can simply check if a node is
in weak head normal form by reducing it, and see if the reduced node is the same as the
original node. For normal form reduction this does not work, as we need to traverse the
whole tree to check if there is an unreduced node somewhere in the tree. To solve this,
we add a flag to a Data node that encodes if it is in normal form or not. On creation of
a data node the flag is not set, and when we reduce a data node to normal form we set
the flag.

In order to introduce randomisation, we essentially use the same ideas as for weak head
normal form reduction. We alternate the order in which child nodes of a data node are
reduced. In our implementation we alternate the order by reducing from left to right,
or from right to left, where the order is chosen depending on a flag stored in the data
node, as discussed in the previous section.

Listing 6.10 shows the implementation of result sharing and randomisation in the nf

procedure as described above.

6.8. Conclusions

In this chapter we saw how the graph reducer as discussed in Chapter 5 can be modified
to support concurrent and parallel graph reduction. In particular, we have seen:

• The problems in parallel graph reduction.
• Result sharing and randomisation as a method for load balancing the parallel
execution of a tree of dependent tasks.

• Using result sharing and randomisation as a method for parallel graph reduction.
• The implementation of result sharing and randomisation in weak head normal form
reduction and normal form reduction.

In Chapter 7 we see the application of this graph reducer to the implementation of our
transactional functional language. In Chapter 9 we discuss some experiments on the
parallel graph reducer to evaluate the relative speedups that can be attained, and how
it compares to the serial graph reducer.

63

7. A Transaction Manager for Transactional
Functional Languages

In this chapter we discuss an implementation of a transaction manager for our prototype
language. Our transaction manager serves the same purpose as the transaction man-
ager function by Trinder as discussed in Section 3.2. That is, our transaction manager
maintains a state and applies a stream of transaction to the state, producing a stream
of results. However, our transaction manager differs in two ways from that of Trinder.
First, our transaction manager is adapted to the transactional functional language model.
Second, we use imperative synchronisation mechanisms to handle concurrent streams of
transactions. Additionally, our transaction manager supports the execution of stored
transactions. Furthermore, we discuss forcing the evaluation of transactions as a so-
lution to space leaks that show up in the theoretical model due to lazy reduction of
states.

In this chapter, we first provide an overview of the implementation, where we discuss the
data structures that we use, handling of requests, and setting up the initial state. Next,
we discuss the execution of transactions and stored transaction calls in a non-concurrent
environment. After that, we discuss how to execute transactions concurrently. Finally,
we discuss forcing the evaluation of transactions.

7.1. Overview

First, we provide an overview of the implementation of the transaction manager. We
start out by discussing the data structures that we use for the implementation, followed
by an overview of the procedures that implement the transaction manager, and finally
we briefly discuss setting up an initial state.

Data Structures

First, we discuss the data structures for the transaction processing features of the imple-
mentation of the transaction manager. We have data structures to represent a set of def-
initions, the state, transactions, stored transactions and stored transaction calls.

1 type Definitions = Map String Node

Listing 7.1: Definitions data structure.

Listing 7.1 shows the data structure for the definitions that are part of a transaction,
which is a mapping of identifiers to supercombinators (that may or may not been resolved

65

7. A Transaction Manager for Transactional Functional Languages

yet). A primed identifier denotes that the supercombinator is an update to the state,
and a non-primed identifier denotes that the supercombinator is a local definition and
must not go into the state. Additionally, an entry (id, node) where node = null denotes
that the entry id must be removed from the state. Alternatively, it would be possible
to use two maps, one for local definitions and one for updates to the state, this is more
elegant but complicates the implementation as described in this chapter.

1 type StoredTransaction = definitions : Definitions

2 * parameters : String[]

Listing 7.2: Stored transaction data structure.

Listing 7.2 shows the data structure of a stored transaction. A stored transaction consists
of a set of definitions together with a list of parameter names.

1 type State = data : Map Identifier Node

2 * stored : Map Identifier StoredTransaction

Listing 7.3: State data structure.

Listing 7.3 shows the data structure of a state. A state consists of a mapping data

that maps identifiers to supercombinator templates in the state graph, and a mapping
stored that maps identifiers to stored transactions.

1 type Transaction = definitions : Definitions

2 * stored_updates : Map Identifier StoredTransaction

Listing 7.4: Transaction data structure.

Listing 7.4 shows the data structure of a transaction. A transaction consists of a set
of definitions, together with a mapping stored updates that describe updates to the
stored transactions in the state. Similar to the Definitions data type, an entry (id, st) ∈
stored updates where st = null denotes that the stored transaction id has to be
removed from the state.

1 type Call = name : String

2 * arguments : Map Identifier Node

Listing 7.5: Call data structure.

Finally, a call of a stored transaction is encoded by the Call data structure as shown
in Listing 7.5. The name field determines which stored transaction is called, and the
arguments field contains the arguments for the parameters of the stored transaction.
Alternatively, a call could be part of a transaction, however this would allow a transaction
to have multiple results.

66

7.1. Overview

Handling Requests

Now we discuss how transactions and stored transaction calls are handled at a global
level.

First, we assume that there is some global variable state that contains the state on which
transactions are executed. Next, we assume that there is an interface to the outside world
on which requests are received to execute transactions, and which returns results to the
senders. We assume that this interface invokes either the procedure handleTransaction
or handleCall to respectively handle a transaction or to call a stored transaction. The
implementation of these procedures are shown in Listing 7.6.

1 global state : State;

2
3 handleTransaction(transaction : Transaction) {

4 result ← executeTransaction(transaction);

5 return nf(result);

6 }

7
8 handleCall(call : Call) {

9 result ← executeCall(transaction);

10 return nf(result);

11 }

Listing 7.6: Requests handlers.

To handle a transaction, the executeTransaction procedure is invoked. This procedure
takes the transaction and the global state, and updates the global state to reflect the
state after the execution of the transaction, and produces as a result the root of the
result graph of the transaction. The result graph of the transaction is then reduced to
normal form, using the procedure nf as discussed in Chapter 5.

A stored transaction call is handled similarly, but it invokes the executeCall proce-
dure instead. The executeCall procedure looks up the stored transaction indicated
by the Call data structure, and executes this transaction in the current state with the
arguments provided by the Call data structure.

In the next section, we discuss the implementation of the executeTransaction proce-
dure and the executeCall procedure. In the section after that, we discuss how concur-
rent requests can be handled.

Initial State

When the system is first started, an initial state has to be constructed. The initial state
should contain the primitive functions that are provided by the system, and may contain
other standard definitions.

67

7. A Transaction Manager for Transactional Functional Languages

1 initialState() : State {

2 state.put("add", new Add());

3 state.put("sub", new Sub());

4 ...

5 }

Listing 7.7: Initialising the state.

As an example, Figure 7.7 shows a procedure that constructs an initial state. The
Add and Sub structures are primitive functions that are part of the graph reduction
implementation, as discussed in Chapter 5.

7.2. Executing Transactions and Stored Transaction Calls

Now we discuss the implementation of the executeTransaction procedure and the
executeCall procedure as mentioned in the previous section. For this implementation
we do not yet consider the handling of concurrent requests, which will be discussed in
the next section.

Executing Transactions

First, we discuss the execution of transactions, which is done as follows. First, free vari-
ables in the supercombinators of the transaction are resolved as discussed in Chapter 5.
This includes both free variables that refer to supercombinators in the transaction itself,
as well as free variables that refer to supercombinators in the state. Next, the updates
specified by the transaction are applied to the state, including updates to the supercom-
binators in the state, as well as updates to the set of stored transactions. Finally, the
root of the resolved result supercombinator is returned.

1 executeTransaction(Transaction : transaction) : Node {

2 definitions’ ← resolve(transaction.definitions, state.data);

3 update(state.data, getUpdates(definitions’));

4 update(state.stored, transaction’.stored);

5 return definitions’.locals.get("result");

6 }

7
8 update(target : Map String a, changes : Map String a) : void {

9 for((key, value) : changes) {

10 if(value = null) {

11 target.remove(key);

12 } else {

13 target.put(key, value);

14 }

15 }

16 }

68

7.2. Executing Transactions and Stored Transaction Calls

17 getUpdates(environment : Map String Node) : Map String Node {

18 updates ← new Map();

19 for((var, supercombinator) : resolved) {

20 if(var.endsWith("’")) {

21 updates.put(

22 // Remove the prime from the variable name

23 var.substring(0, var.length - 1),

24 supercombinator

25);

26 }

27 }

28 return updates;

29 }

Listing 7.8: The executeTransaction procedure

Listing 7.8 shows the algorithm for executing a transaction. The resolve procedure
resolves the free variables in the transaction, of which the implementation is discussed in
Chapter 5. Using the getUpdates procedure, we filter the updates from the transaction
environment and remove the primes from the variable names, to obtain an environment
that consists of the resolved updates of the transaction. We update the data and stored
maps through the generic update procedure.

Executing Stored Transaction Calls

Using the executeTransaction procedure, the implementation of the executeCall pro-
cedure is relatively straightforward. First we fetch the stored transaction as indicated by
the call. Then we insert the arguments into this transaction as if they were locally defined
supercombinators. Finally, we execute this transaction using the executeTransaction
procedure.

1 executeCall(call : Call) : Node {

2 stored_transaction ← state.stored.get(call.stored);

3 if(stored_transaction = null) {

4 throw new Exception("Stored transaction does not exist");

5 }

6 if(stored_transaction.parameters.keySet() �= call.arguments.keySet()) {

7 throw new Exception("Arguments do not match parameters");

8 }

9 definitions ← stored_transaction.definitions.putAll(call.arguments);

10 return executeTransaction(new Transaction(definitions, new Map()));

11 }

Listing 7.9: The executeCall procedure.

Listing 7.9 shows the implementation of the executeCall procedure. Here we perform
some additional checks to ensure that the stored transaction actually exists, and that

69

7. A Transaction Manager for Transactional Functional Languages

the arguments passed to it match the parameters. If this last check where to be omitted,
local definitions of the transaction could be overwritten, creating a potential security
leak. We assume that the putAll function does not modify the stored transaction,
but that it returns a new transaction with the arguments added to it. Now the reason
why resolve has been implemented non-destructively should also be clear, because if
it would update the expression to resolve it, the stored transaction can only be used
once.

7.3. Handling Concurrent Transactions

Now we discuss how requests can be handled concurrently. In order to handle concurrent
requests, we assume that the interface to the outside world may create multiple threads
that may invoke the executeTransaction procedure and the executeCall procedure
concurrently. The implementation for these procedures as discussed in the previous
section are not correct in such a concurrent environment, as the operations on the state
may interfere, leading to race conditions.

1 handleTransaction(transaction : Transaction) {

2 synchronized(state) {

3 result ← executeTransaction(transaction);

4 }

5 return nf(result);

6 }

7
8 handleCall(call : Call) {

9 synchronized(state) {

10 result ← executeCall(transaction);

11 }

12 return nf(result);

13 }

Listing 7.10: Handling requests concurrently using locks.

The simplest method to ensure correct updating of the state is to make access to the
state mutually exclusive. This can be implemented using a lock in the request handler
procedures as shown in Listing 7.10. The construct synchronized(state) ensures mu-
tual exclusive access to its code block. Normal form reduction does not have to be part
of the mutual exclusive region, as it may be done concurrently using the parallel graph
reducer as discussed in Chapter 6.

However, we can do better than this. As read transactions do not modify the state,
these can be executed concurrently. This can be implemented using a readers / writers
lock, where a write lock is chosen if the transaction wants to perform updates, otherwise
using a read lock. However, we can do even better than that if we can atomically update
the state, as this allows reads to be lockless. We can make updates to the state atomic

70

7.3. Handling Concurrent Transactions

by performing updates on the state non-destructively to obtain a new state next to the
existing state, and then updating the global state variable atomically to point to this
new state.

1 executeTransaction(transaction : Transaction) : Node {

2 if(getUpdates(transaction.definitions).size() = 0

3 ∧ transaction.stored.size() = 0) {

4 definitions’ ← resolve(transaction.definitions, state.data);

5 } else {

6 synchronize(state) {

7 definitions’ ← resolve(transaction.definitions, state.data);

8 state’ ← new State();

9 state’.data ← update(state.data, getUpdates(definitions’));

10 state’.stored ← update(state.stored, definitions’.stored);

11 state ← state’;

12 }

13 }

14 return definitions’.locals.get("result");

15 }

Listing 7.11: Lockless reads for transactions.

Listing 7.11 shows the implementation of this approach to the execution of transactions.
We first check if the transaction performs any updates. If the transaction does perform
updates, we enter a mutually exclusive region and we construct a new state with the
updates. We update the global state pointer to point to our newly constructed state
to update the state atomically. The update function now constructs a new mapping,
instead of updating the existing ones. If the transaction does not perform any updates,
we take the current state and resolve free variables in the transaction. Once we got
a pointer to a state data structure, that data structure does not change anymore, as
updates construct a new state instead of modifying the current state.

Listing 7.12 shows the implementation for stored procedure calls. In order to execute
stored transactions, we first get the state and store it in a local variable local state. We
then look up the stored transaction from this state, and check if this stored transaction
updates the state. If the stored transaction does not update the state, we execute it
on the state that we stored in local state. If the stored transaction does update the
state, we enter a mutually exclusive region. Between fetching the state and going into
the stored region, another transaction may have updated the state and modified the
stored transaction, so we have to fetch a new copy. We then proceed by executing this
stored transaction as shown earlier.

71

7. A Transaction Manager for Transactional Functional Languages

1 executeCall(call : Call) : Node {

2 local_state ← state;

3 st ← local_state.stored.get(call.stored);

4 if(getUpdates(transaction).size() = 0) {

5 definitions ← st.definitions.putAll(call.arguments);

6 defintiions’ ← resolve(definitions, local_state.data);

7 } else {

8 synchronized(this) {

9 st ← state.stored.get(call.stored);

10 definitions ← st.definitions.putAll(call.arguments);

11 definitions’ ← resolve(definitions, local_state.data);

12 state’ ← new State();

13 state’.data ← update(state.data, getUpdates(definitions’));

14 state’.stored ← update(state.stored, definitions’.stored);

15 state ← state’;

16 }

17 }

18 return definitions’.locals.get("result");

19 }

Listing 7.12: Lockless reads for stored procedure calls.

7.4. Forcing Evaluation of Transactions

A problem when reducing states lazily is that we may get long chains of redexes in states
as a result of a chain of transactions that update the state but which do not read the
state. In a practical implementation, this can lead to a stack overflow when reading after
many updates.

Additionally, during our experiments we also found that space leaks may build up in the
state, as discussed in Section 9.3. Our experiments shows that a map function applied
to a binary tree may leave redexes applied to Leaf nodes, which result may never be
demanded by transactions that read the state, causing a space leak.

Another related problem is that sharing nodes are created in the state, but these are not
cleaned up when they are not needed anymore. This happens because the reduction of
result expressions forces reduction in the state, which may create result sharing nodes,
but which can not clean up these result sharing nodes.

Our initial solution to these problems was to force the reduction of states to normal
form, as this forces the reduction of all redexes. Also, we limit the number of active
transactions to avoid a build-up of a long chain of redexes before we can reduce them.
In order to implement this, we keep track of which parts of the state have already been
reduced to normal form, in order to avoid duplicate reduction of the state every time its

72

7.5. Conclusions

reduction is forced. We have already implemented this in 6.7, by maintaining a flag on
Data nodes to indicate whether it is in normal form.

However, we found that simply forcing the reduction of states to normal form does not
work as intended for limiting the number of active transactions in a concurrent setting.
The problem is that if a small transaction is preceded by a very large transaction, and
we force the evaluation of the state created by the small transaction, this also forces the
reduction of the state produced by the large transaction. Because of that, we can not
know accurately when the reduction of the small transaction is done, which is needed to
count the number of active transactions.

A theoretical solution to this problem is to reduce only those parts of the state that a
transaction modifies, i.e. forcing the evaluation of a transaction. To implement this,
for all redexes, we need to keep track of which transaction it belongs to. In order to
force the evaluation of a transaction, we need to force the reduction of all redexes that
belong to that transaction. We plan to further investigate the implementation of this
solution.

7.5. Conclusions

In this chapter we have discussed the implementation of a transaction manager for
transactional functional languages. In particular we have seen:

• Data structures that can be used for the implementation of a functional transaction
manager, and a global overview of the execution of a transaction.

• Algorithms for the execution of transactions and the execution of calls to stored
transactions.

• An algorithm for the concurrent execution of transactions that allows lockless
reads.

• The problem caused by lazy reduction of states, and a solution based on forcing
the evaluation of transaction.

With what we have seen so far we can already implement a complete functional trans-
action processing languages. However, we have not discussed persistence yet, this is the
topic of the next chapter. Furthermore, in Chapter 9 we asses the performance of the
locking and lockless reads approach to executing transactions concurrently.

73

8. Maintaining Persistence

So far we have seen the implementation of graph reduction, and a transaction manager
for the implementation of a transactional functional language. In this section we discuss
different ways to efficiently store the state in persistent memory, with the goal of guar-
anteeing durability in case of a system failure, storing reduction results, and to be able
to work with states that do not fit in main memory.

In this chapter, we first discuss the characteristics of persistent storage media. Next,
we discuss journaling as a method to guarantee durability. After that, we discuss snap-
shotting as a method to store reduction results, as well as being able to store results of
ongoing computations. Following that, we discuss log-structured storage as a method to
work with states that do not fit in main memory. Next, we combine the snapshotting
and the log-structured storage approach to combine their strengths, while minimising
their weaknesses. Finally, we discuss the implementation of journaling and snapshotting
for our prototype implementation.

8.1. Characteristics of Persistent Storage

Up to now we have assumed that the state is stored in non-persistent main memory. We
define persistent memory as memory that retains its contents when the system restarts
after a failure or reboot, whereas non-persistent memory loses its contents when the
system restarts.

Current implementations of persistent memory can be found mainly in the form of hard
disk drives and flash drives. Hard disk drives are the cheapest per unit of storage, but
they suffer from high latency to access data, which is around 10 milliseconds. Solid state
drives are currently about 10 times as expensive as hard drives, but they have significant
lower latency at about 0.1 milliseconds. Compared to current non-persistent memory
with access times in the nanoseconds, current persistent storage mechanisms are very
slow. This means that implementing graph reduction directly in persistent memory is
not a realistic option.

In persistent memory, reading and writing data sequentially is generally comparatively
fast compared to random access. To reason about the performance of a system working
with storage with slow access times, we can reason in terms of the number of I/O
operations required to execute a task, where one I/O operation is a sequential read or
write. Generally, we try to minimise the numbers of I/O operations, by performing more
useful work per I/O operation. This can be achieved by putting elements of data close

75

8. Maintaining Persistence

to each other that commonly need to accessed together, and reading elements of data in
blocks so that many relevant elements are read in a single I/O operation. Essentially,
we try to maximise the locality of reference of data.

8.2. Journaling

Journaling [19] is a standard method in databases for guaranteeing durability of trans-
actions in the event of system failure.

The idea of journaling is that a transaction is written to a transaction log prior to its
execution. If the system crashes and starts up again, it recovers the state by cleaning
up the effects of partially executed transactions, and then re-executing all transactions
to obtain the state as it was before the crash. To guarantee durability to the user, the
system must ensure that a log entry is actually written to persistent memory before
confirming the execution of the transaction to the client.

In theory, having an initial state and a journal starting in this initial state provides
enough information to reconstruct the state at any point in time. However, in practice
this is not really sufficient: the log grows beyond bounds as entries can never be removed,
and moreover it is extremely inefficient to re-execute all transactions when a journal
grows large. For this reason, we want to store reduced forms of states as a checkpoint,
so that the system only has to recover from the last checkpoint. In the next section we
discuss snapshotting, which is a method for creating such checkpoints. We discuss the
implementation of journaling later in this chapter.

8.3. Snapshotting

We now discuss snapshotting as a method to create a checkpoint for journaling. The
idea of snapshotting is that we serialise the state, and write it to persistent memory. To
restore the state, we can simply deserialise the state from persistent memory to obtain
the original state.

We assume that sharing is maintained when serialising and deserialising the state. The
maintenance of sharing is usually implemented by remembering the positions of nodes
that have already been written. If the serialisation process encounters a node that has
already been written, it writes a pointer to the existing node instead of writing a copy of
the node. However, this means that serialisation requires memory linear in the number
of nodes in the graph that is serialised. Further details about the implementation of
serialisation are outside the scope of this thesis.

Snapshotting may seem like a simple task, but there are some complications if we want
to snapshot states containing redexes while concurrently reducing the state.

The problem with concurrent reduction during snapshotting is that sharing may be lost
in a snapshot. Consider the example in Figure 8.1. The serialisation process starts by
serialising the root node Cons, and then proceeds by recursively serialising the left and

76

8.3. Snapshotting

Cons

@

g@

f

→

Cons

@

gCons

x y

→

Cons

Cons

x y

Figure 8.1.: Concurrent serialisation and snapshotting.

Cons

@

f

y →

Cons

Cons

x y

y

Figure 8.2.: Loss of sharing in the snapshot.

right branches of the root node. First, the serialisation process serialises the left branch,
as shown by the dashed line in the leftmost state. Now, another thread may become
active and reduce the graph to obtain the rightmost state. After that the serialisation
process continues by serialising the right branch of the root node.

The snapshot obtained by the snapshotting process is shown on the left side in the
Figure 8.2. When this snapshot is reduced, we obtain the graph on the right side, and
we find that sharing of the value y is lost. This example effectively shows that sharing
may be lost when snapshotting is performed concurrently with reduction.

As we do not want to block access to the state when creating a snapshot, a simple
solution to solve the problem of losing sharing is to reduce the state to normal form
before snapshotting it. This is also the approach that we have implemented in our
prototype, as discussed later in this chapter. However, the drawback of this approach
is that snapshotting could be delayed for a long time while a large update is being
evaluated. This means that in the mean time, the journal can grow very large, leading
to a long recovery time if there is a system failure before snapshotting is finished.

Ideally, we want to be able to take a snapshot without reducing the state first, i.e. we
want to be able to snapshot ongoing computations. To do this, we need to make it seem
as if the snapshot is created while no reduction was going on. We observe that the only
nodes reachable from the root that change during reduction in our graph reducer are the
sharing nodes. The essential idea to create a consistent snapshot is to make a reduction
thread snapshot the state of a sharing node before updating it while snapshotting is
going on. In order to implement this, we can remember the original shared node of
a sharing node when it is reduced during the creation of a snapshot. If the snapshot
process encounters a sharing node, we see if there is an original shared node stored for

77

8. Maintaining Persistence

this sharing node, and if so we snapshot the original shared node instead of the current
shared node.

One complication with this approach is that there is no garbage collection for graph
reduction at all during snapshotting, as we keep a reference to each original node in
the graph. We can solve this by only remembering the original reference for sharing
nodes that have been constructed before snapshotting was started. To do this, we
need to know if a node was created before the start of the snapshot, or if it has been
created during the snapshot. This can be implemented by sequentially numbering the
snapshots, and by assigning each sharing node a number indicating to which snapshot
it belongs. When snapshotting is started, a global snapshot number is incremented by
one, and only sharing nodes constructed from there on have this incremented snapshot
number. If a thread reduces a node with the current snapshot number, it does not
have to store the original shared node. When the snapshot procedure has snapshotted
a node, it can increment the snapshot count of that node by one to ensure that the
original shared node is no longer stored by reduction threads for that node. We have
not implemented this approach in our prototype, and additional details remain a topic
of further investigation.

The main advantages of snapshotting compared to the approach that we see in the next
section is that we can create checkpoints of ongoing computation, and that sharing is
maintained in snapshots. The biggest drawback of snapshotting is that we can not sup-
port states that are larger than main-memory. Another drawback is that snapshotting
can take considerable time to complete. If there is a high load on the system, we might
have to snapshot quite often to keep the journals small enough for quick recovery times.
As the size of the state grows, taking snapshots takes a longer time, and the journals
grow larger between every subsequent snapshot, leading to longer recovery times.

8.4. Log-Structured Storage

In the snapshotting approach, large parts of the state might not have changed between
snapshots, so creating a completely new snapshot is inefficient. An alternative approach
to store data that solves this problem is log-structured storage [22], also known as append-
only storage.

The main idea of log-structured storage is that the nodes in the state are stored as
records in a log file, where records can point to other records by their position in the file
to encode graph edges. After the execution of a transaction, all new nodes in the state
are appended to the log, while they may refer to nodes that have already been written to
the log. After all nodes have been written, a special root record is written that encodes
the bindings in the state after the transaction. This storage model fits the functional
model well, as it is inherently non-destructive.

An advantage of log-structured storage is that data is only appended, and never over-
written. If the system crashes while appending records to a log, there is no risk that

78

8.4. Log-Structured Storage

data that has already been written to the log is corrupted. State recovery is simply
a matter of finding the last correctly written root record from the end of the log file,
and reading the state by following the pointers. One can consider this approach as a
continuous snapshot of the system state in a single file. This has the advantage that we
always have an up-to-date snapshot of the system by appending only the changes since
the last snapshot, instead of writing the whole state every time.

root

7:Branch

3:Branch

1:Leaf 2:Leaf

6: Branch

4:Leaf 5:Leaf

root’

11:Branch

10:Branch

9:Leaf

1 Leaf

2 Leaf

3 Branch 1 2

4 Leaf

5 Leaf

6 Branch 4 5

7 Branch 3 6

8 Root 7

9 Leaf

10 Branch 9 5

11 Branch 3 10

12 Root 12

Figure 8.3.: Log-structured storage example.

Figure 8.3 illustrates how log-structured storage works through an example. On the left
side we see two subsequent states, indicated by root and root’, which reside in main
memory. On the right hand side we see what is written to the log to store these states.
We see that each entry in the log has a position by which it can be referred, which is in
this case its line number, but in practice the byte offset from the beginning the log file
can be used. First, root is written to the log file. We see that nodes in the log file refer
to one another by their location in the log. For every node in the graph, we remember
at which location in the log it is written, so that we can refer to it later. When root’

is written to the log, only the new nodes are written to the log, while referring to the
nodes that have already been written by their location in the log.

One of the main advantages of log-structured storage is that it allows states that are
larger than main-memory. This can be achieved by dynamically unloading parts of the
graph that have been written to the log file, and replacing these parts by a special node
that marks where its contents can be found in the log file. If we encounter such a special
node during reduction, we can dynamically load that part of the graph into memory.
An illustration of how this approach works can be seen in Figure 8.4. When during
reduction we encounter the node Stored, we load the associated graph from the log and
replace Stored by this graph. The dynamic loading and unloading of parts of the graph
could be implemented using a caching mechanism, using a least-recently used policy

79

8. Maintaining Persistence

root

7:Branch

3:Branch

1:Leaf 2:Leaf

6:Stored

1 Leaf

2 Leaf

3 Branch 1 2

4 Leaf

5 Leaf

6 Branch 4 5

7 Branch 3 6

8 Root 7

Figure 8.4.: Graph with an unloaded branch.

to determine which nodes to unload. That is, when the system is low on memory, it
could unload the top n least-recently used nodes. However, we have not investigated the
implementation of this, so this remains a topic of further research.

A main concern when dynamic loading parts of the graph is that this may be very slow
because many I/O operations may be needed to read the relevant parts from the log file.
To minimise the number of I/O operations needed, we should maximise the amount of
relevant nodes read per I/O operation. To do this, we can write parts of the graph in
blocks, e.g. the size of a disk page, where blocks are filled using breadth-first traversal
of the graph. When a node is to be loaded from the log, we also get all nodes that are
in the same block, which are likely to be relevant.

A major complication of the log-structured approach is that the log only grows, and
never shrinks in size. Further, the layout of the log becomes sub-optimal as changes to
the state are appended to the log. Both of these problems can be solved simultaneously
by using garbage collection to periodically clean up the log, while ensuring that the
cleaned up log is written in blocks as described in the previous paragraph. A problem
in garbage collection is that it is very expensive to maintain sharing in a cleaned up log
file. This is because we have to remember which nodes have already been seen. If the
log is very large, this may requires more memory than available. If an application of
the system does not depend on sharing for memory efficiency, this should however be no
problem. The efficient implementation of garbage collection in this setting is a topic of
further investigation.

Further, log-structured storage is inefficient for storing suspended computations. If we
store a redex, and later compute its result, we have to somehow ensure that the log is
updated to contain this result. We can not actually overwrite the result in the log in-
place, because if the system crashes while updating a record, the log may be corrupted
due to incomplete written records. Instead, we could append every path in the graph
from the root to the updated result. However, there may exist many paths to the result,
and as we cannot see locally which expressions reference the redex, it can be expensive

80

8.5. Mixed Approach

to find all these paths. Furthermore, writing all these paths can be require quite a lot
of space. In the next section, we discuss an alternative solution to this problem.

Finally, in our current language model, the root of the graph is the environment that
maps identifiers to expressions. If this environment contains many entries, writing it to
the log for every transaction becomes very expensive. A potential solution for this to
store this environment as a tree structure, such that we can refer to parts of previously
written roots when writing a new root. However, in the next section we see an alternative
approach to solve this problem.

8.5. Mixed Approach

We now combine both the snapshotting approach and the log-structured approach, to ob-
tain an approach that allows both storage of suspended computations, as well as allowing
states that are larger than main-memory, while providing low recovery times.

The idea is that we split the heap into an active heap which may contain reducible
expressions, and a passive heap which must be in normal form. When reducing nodes in
the active heap to normal form, these nodes are moved to the passive heap.

As the passive heap is in normal form, it can be stored efficiently using log-structured
storage. This allows the passive heap to be larger than main-memory. However, this
also means that we can not ensure that sharing is maintained due to garbage collection.
But as there are no suspensions in this heap, this affects only the amount of memory
required to store the state, and it does not affect the efficiency of lazy evaluation.

For the active heap we use the snapshotting approach, as to allow checkpointing of long-
running transactions. Instead of using special root nodes in the passive heap, the active
heap serves as the root of the passive heap. This means that when a snapshot is created,
we have to ensure that the referenced nodes in the passive nodes have all been written
to the log. Recovery is a matter of restoring the active heap, which can be done by
loading the last snapshot and re-applying the transactions in the journal since the last
snapshot.

We have to ensure that the active heap stays small, so that it can fit in main memory.
To do this, we can force the evaluation of states, such that they can be written to the
passive heap as quickly as possible. For this, the technique as described in Section 7.4
can be used.

If we can manage that the active heap stays small, it is possible to create snapshots
much faster than in an approach using only snapshotting. Being able to perform faster
snapshots allows us to perform more snapshots. This means that the number of new
journal entries between snapshots is smaller, leading to lower recovery times than the
snapshotting-only approach.

81

8. Maintaining Persistence

8.6. Implementing Journaling and Snapshotting

In our prototype implementation we have implemented journaling together with the
snapshotting approach. To avoid the sharing issues of snapshotting as discussed in
Section 8.3 we reduce states to normal form before snapshotting.

Preliminaries

To work with persistent memory, we assume the existence of a simple file system that
provides the following procedures:

openFile : String → File
Given the name of a file, returns a file handle for reading and writing to the file.

closeFile : File
Given a file handle, closes a file.

serialise : a × File
Takes a data structure of some type a, and converts this to a steam of data and
appends this to the given file.

deserialise : File × a
Reads a stream of data from a file and converts this to a data structure of some type
a. If the end of the file is reached before or during deserialisation, the procedure
returns null.

createFile : String
Given the name of a file, creates that file.

deleteFile : String
Given the name of a file, deletes that file.

renameFile : String × String
Given the current name of a file and a new name, renames the file from the current
name to the new name.

We assume that creating, deleting and renaming files are operations that are both atomic
and durable. That is, we assume that when we invoke such an operation on the file
system, it has actually been performed after control is returned to the program, and
its effects persist in the event of system failure. If the system crashes during such an
operation, and control has not been returned to us, then we assume that the operation
has either been executed completely, or it has not been executed at all.

We assume that appending to files is durable, but not necessarily atomic. That is, when
control is returned after invoking an append operation, we assume that the data has
been written to the file, and the effects of the append operation persists in the event of a
system failure. If there is a system failure during an append operation, we assume that
some data may have been written, but not necessarily that all data has been written.
Furthermore, we assume that there is no corruption of data in case of system failure.

82

8.6. Implementing Journaling and Snapshotting

That is, append operations that have been executed successfully are not affected by a
system failure.

In our implementation we use the serialisation mechanism provided by Java to implement
serialise and deserialise.

Journaling

Now we discuss the implementation of journaling. We first discuss writing transactions
to journals, followed by recovering the state by applying the transactions in a journal to
the state.

To write a transaction to a journal, we append a serialised version of the transaction
to the journal file before binding free variables. Additionally, transactions have to be
journaled in the same order as in which they have been applied to the state, in order to
guarantee that we obtain the same state after recovery as that we have before recovery.
As our transaction manager uses mutual exclusion to ensure that concurrent update
transactions are applied serially, we can perform journaling in this mutual exclusive
region to guarantee that journals are written in the same order as that the transactions
are applied.

1 global journal : File

2
3 executeTransaction(transaction : Transaction) : State {

4 ...

5 synchronize(state) {

6 // Journal the transaction

7 serialise(transaction, journal);

8
9 // Execute the transaction

10 ...

11 }

12 ...

13 }

Listing 8.1: Journaling transactions.

Listing 8.1 shows how journaling is implemented for the execution of transactions, ex-
tending the executeTransaction procedure as discussed in Chapter 7. In this imple-
mentation we assume that there is a global file handle journal to which log entries can be
written. The implementation of journaling for stored transaction calls is similar.

The drawback of this implementation is that each transaction performs an I/O opera-
tion, which limits throughput. An approach to reduce the number of I/O operations
is to buffer incoming transactions while an I/O operation is in progress. All buffered
transactions can be written sequentially using one I/O operation once the initial I/O

83

8. Maintaining Persistence

operation completes, followed by executing the transactions in the same order as that
they where written. However, the implementation of this is future work.

To recover the state from a journal, we deserialise the transactions in the journal and
apply them to the state in the same order as that they have been written. An entry in
a journal might have been corrupted if there was a system failure while appending to a
journal. If deserialise encounters an incomplete or corrupted entry, it returns null.
Instead of attempting to repair a log file, we use a new log file every time the system is
restarted, while keeping the existing log files.

1 applyJournal(file : File) : Void {

2 transaction ← deserialise(file);

3 while(transaction �= null) {

4 execute(transaction);

5 transaction ← deserialise(file);

6 }

7 }

Listing 8.2: The applyJournal procedure.

Listing 8.2 shows how recovering a journal is implemented. Given a journal file handle,
this procedure updates the state by the applying the transactions stored in the journal.
We assume that deserialise returns null when the end of file is reached, or if an
incomplete serialised entry is encountered. For simplicity, we assume that the execute
procedure distinguishes between regular transactions and stored transaction calls.

Snapshotting

Now we discuss our implementation of snapshotting.

As discussed in the previous sub-section, every time the system recovers, we create a new
journal. To ensure that journal files are cleaned up correctly, we associate a sequence of
journals {n, . . . ,m} with a snapshot. As soon as a snapshot has been successfully written
to persistent memory, its associated journal files are deleted, as they are not needed
anymore. Additionally, cleaning up journal files may fail if there is a system failure
while cleaning up journal files. For this reason, we store the journal files associated to a
snapshot in the snapshot, as this allows us to clean up any remaining journal files during
recovery.

1 global firstJournal : Integer

2 global lastJournal : Integer

3 global sumJournalSize : Integer

4 global constant snapshotThreshold : Integer

5
6 data Snapshot = state : State * firstJournal : Integer * lastJournal :

Integer

Listing 8.3: Globals for snapshotting.

84

8.6. Implementing Journaling and Snapshotting

Listing 8.3 shows the global state and a data structure that we use to keep track of the
journals associated to a snapshot. The variables firstJournal and lastJournal re-
spectively encode the begin and end of the sequence of journal numbers associated to the
next snapshot. The variable sumJournalSize keeps track of the size of all journals asso-
ciated to the next snapshot that have been closed for writing. The snapshotThreshold
is a constant that determines when the snapshotting procedure is started. The Snapshot
data structure is used to serialise a snapshot to disk, and keeps track of the journals
associated to this snapshot and the snapshotted state.

1 global snapshotting : Boolean

2
3 executeTransaction(transaction : Transaction) : State {

4 ...

5 synchronize(state) {

6 // Journal the transaction

7 serialise(transaction, journal);

8
9 // Start snapshotting

10 if(sumJournalSize + size(journal) > snapshotThreshold) {

11 startSnapshot();

12 }

13
14 // Execute the transaction

15 ...

16 }

17 ...

18 }

Listing 8.4: Initialising a snapshot.

To initialise a snapshot, we extend the executeTransaction and executeCall pro-
cedures as shown in Listing 8.4. When the cumulative size sumJournalSize of all
the journal files associated to the next snapshot plus the size of the current journal
size(journal) grows beyond snapshotThreshold, then the snapshotting procedure is
started by invoking startSnapshot.

In the startSnapshot procedure, shown in Listing 8.5, we first check if there is already
a snapshot in progress, if so we abort the procedure. Next, we set the snapshotting flag
to mark that snapshotting is in progress. We assume that the procedure is invoked in
a mutual exclusive setting, otherwise there is a data race because we check and update
the snapshotting flag non-atomically. Next, we spawn a new thread that actually
performs the snapshotting by invoking the snapshot procedure with the current state
and the journal sequence numbers associated to the snapshot. The snapshot procedure
is discussed below. A new thread is used, as to not block the transaction that invoked
the snapshot procedure. When snapshotting has been started, all new transactions are

85

8. Maintaining Persistence

part of the next snapshot. We set up the next snapshot by creating a new journal,
associating only that journal to the next snapshot, and resetting sumJournalSize to
zero.

1 startSnapshot() : Void {

2 if(¬snapshotting) {

3 snapshotting ← true;

4
5 // Start the snapshotting procedure

6 spawn thread: snapshot(state, firstJournal, lastJournal);

7
8 // Create a new journal

9 lastJournal ← lastJournal + 1;

10 firstJournal ← lastJournal;

11
12 closeFile(journal);

13 createFile("journal." + lastJournal);

14 journal ← openFile("journal." + lastJournal);

15
16 sumJournalSize ← 0;

17 }

18 }

Listing 8.5: Starting a snapshot.

1 snapshot(state : State, firstJournal : Integer, lastJournal : Integer) :

Void {

2 state ← nf(state);

3
4 snapshotFile ← openFile("new_snapshot");

5 snapshot ← new Snapshot(state, firstJournal, lastJournal);

6 serialise(snapshot, snapshotFile);

7 closeFile(snapshotFile);

8
9 renameFile("new_snapshot", "snapshot");

10
11 // Delete old journals

12 for(i ∈ [firstJournal .. lastJournal])

13 deleteFile("journal." + i);

14 }

15
16 snapshotting ← false;

17 }

Listing 8.6: The snapshot procedure.

86

8.6. Implementing Journaling and Snapshotting

The actual creation of a snapshot is performed by the snapshot procedure, as shown in
Listing 8.6. The snapshot procedure takes as input a state and its associated journal
numbers {firstJournal, . . . , lastJournal}. First, the state is reduced to normal form,
to avoid problems with snapshotting while the state is concurrently being reduced by
other threads, as discussed in Section 8.3. Next, we wrap the reduced state together
with its associated journal file numbers into a Snapshot data structure. We serialise the
snapshot, and write it to a file new snapshot. We rename new snapshot to snapshot

when snapshotting is done, this ensures that the last correctly written snapshot is not
corrupted if there is a system failure during snapshotting. When the snapshot has been
written, we delete the journal files associated to the snapshot that has just been written,
as they are not needed anymore. Finally, we set snapshotting to false so that the
next snapshot procedure can start.

Recovery

We now discuss the implementation of the recovery procedure, which is invoked when
the system starts.

The recover procedure recovers the state of the system using the journal files and log
files, and ensures that old journal files are cleaned up. During recovery, we may encounter
four cases:

• The file snapshot does not exist, and the file new snapshot does not exist: we
assume that there is no stored state, so we set up a new state.

• The file snapshot exists, and the file new snapshot does not exist: we can load
snapshot and apply any new journals.

• The file snapshot exists, and the file new snapshot also exists: There was a system
failure during the creation of a new snapshot, we can delete new snapshot, load
snapshot, apply the new journals, and restart the snapshot procedure.

• The file snapshot does not exists, and the file new snapshot does exist: new snapshot

contains a correct snapshot, but the there was a system failure while renaming
new snapshot to snapshot, so we can just rename new snapshot to snapshot.

87

8. Maintaining Persistence

1 recover() : Void {

2 snapshotting ← false;

3
4 if(¬file_exists("snapshot"))
5 if(¬file_exists("new_snapshot")) {

6 firstJournal ← 0;

7 lastJournal ← 0;

8 sumJournalSize ← 0;

9 create_file("snapshot");

10 state = initialState();

11 } else {

12 renameFile("new_snapshot", "snapshot");

13 load();

14 }

15 } else {

16 load();

17 if(file_exists("new_snapshot")) {

18 startSnapshot();

19 }

20 }

21
22 // Create a new journal

23 createFile("journal." + lastJournal);

24 journal ← openFile("journal." + lastJournal);

25 }

Listing 8.7: The recover procedure.

Listing 8.7 shows how the recovery procedure is implemented. To set up a new state, we
initialise the journal sequence numbers to zero, we create a dummy snapshot file, so that
if the system fails before the first snapshot is created, the recovery procedure will restore
the state from the journals instead of again creating a new state. An implementation
of initialState for setting up the initial state is discussed in Section 7.1. To load a
state, we use the load procedure, as discussed later in this section. At the end of the
recovery procedure we create a new journal file, where we assume that lastJournal
already contains the sequence number of this new journal file.

88

8.6. Implementing Journaling and Snapshotting

1 load() : Void {

2 file ← openFile("snapshot");

3 snapshot ← deserialise(file);

4 closeFile(file);

5
6 state ← snapshot.state;

7
8 // Delete old journals

9 for(i ∈ [snapshot.firstJournal .. snapshot.lastJournal])

10 deleteFile("journal." + i);

11 }

12
13 firstJournal ← snapshot.lastJournal + 1;

14 lastJournal ← firstJournal;

15
16 // Apply new journals

17 file ← openFile("journal." + lastJournal);

18 while(file �= null) {

19 applyJournal(file);

20 sumJournalSize ← sumJournalSize + size(file);

21 closeFile(file);

22 lastJournal ← lastJournal + 1;

23 file ← openFile("journal." + lastJournal);

24 }

25 closeFile(file);

26 }

Listing 8.8: The load procedure.

The load procedure shown in Listing 8.8 loads a state from a snapshot file and applies
new journal files. During the creation of the snapshot, there might have been a system
failure after creating the snapshot, but before deleting the old journals. To be sure that
the journals are correctly cleaned up, we delete them again. Finally, we then check if
there are any new journals and apply them.

89

8. Maintaining Persistence

8.7. Conclusions

In this chapter we have seen methods for the storage of functional states in persistent
memory, in particular we have seen:

• Characteristics of persistent storage media.
• Journaling as a method to guarantee durability.
• Snapshotting as a method to create journaling checkpoints, supporting checkpoint-
ing of suspended computations.

• Log-structured storage as a method to storage states larger than main-memory.
• A mixed approach of snapshotting and log-structured storage, allowing both check-
pointing of suspended computations, as well as allowing large states, while allowing
low recovery times.

• Our implementation of journaling and snapshotting for our language prototype.
This chapter concludes the implementation of our prototype. In the next chapter we
continue with the experimental validation of our prototype.

90

Part III.

Evaluation

91

9. Experiments

Using our prototype implementation, we have performed several experiments to asses the
performance of our graph reduction method, as well as the performance of the prototype
implementation for transaction processing. The transaction processing experiments are
divided into two parts, one investigating the behaviour of our prototype under concur-
rency, and one investigating the throughput performance under high load. First, we
discuss the experimental setup of our experiments in general, then we discuss our par-
allel graph reduction experiments, followed by our concurrency experiments, and finally
we discuss our throughput experiments.

9.1. Experimental Setup

To evaluate our prototype, we run experiments to asses the performance of our parallel
graph reducer, as well as its transaction processing capabilities. The precise details of
our experimental setup are described per experiment in the sections following.

We do not test the performance of our on-disk persistence mechanism, as the imple-
mentation is not yet suitable for high-performance transaction processing. Instead, all
benchmarks are run on an instance that resides completely in system memory.

For all experiments we embed the persistent language in our testing program as to elim-
inate network overhead. This means that, in the transaction processing benchmarks,
all transactions are issued from the same process that also contains our persistent lan-
guage. As to give an idea how this works, the interface used to communicate with the
persistent language is a method String execute(String transaction), that accepts
a transaction encoded in our language and returns a string containing the normal form
of the result of the executed transaction.

In general, for all benchmarks the Java Virtual Machine (JVM) is first warmed up by
running a few benchmarks before the measurements start. This warming up triggers the
just-in-time compilation of the JVM such that native machine code is generated, instead
of the code being interpreted. If we would omit this step, the just-in-time compiler would
trigger during measurements, which leads to inconsistent results.

All our experiments have been conducted on a quad AMD Opteron 6168 system that has
48 cores divided over four processors that each have two NUMA nodes. The system has
a non-uniform memory access (NUMA) architecture, meaning that each NUMA node
has its own local memory. All memory can be accessed from any NUMA node, however
it takes more time to access memory that is local to another NUMA node than to access

93

9. Experiments

the memory associated to the local NUMA node. This means we can run benchmarks
using up to twelve cores to measure parallel performance on a single processor, and
we can run benchmarks using up to 48 cores to measure the performance on a NUMA
architecture.

The operating system used is scientific linux, running Oracle HotSpot JVM version
1.7.0 build 147. All benchmarks have been run with the -server option, using the de-
fault throughput garbage collector. Due to technical issues, we were unable to use the
-XX:+UseNUMA option on our test system, which would enable NUMA aware memory
allocation.

9.2. Parallel Graph Reduction
In this section, we discuss our experiments to asses the performance of our parallel graph
reducer. First, we describe our method for assessing the performance. Next, we present
and discuss the results of our experiments. We conclude this section with a discussion
about the strengths and weaknesses of our parallel graph reducer.

Setup

In order to asses the performance of our parallel graph reduction method, we have
implemented two programs on which we run our benchmarks:

• nfib This program computes the nth Fibonacci number. The implementation is
done naively, for the purpose of measuring parallel performance. This program is
highly parallel, and is not data intensive.

• treesizeWe build a balanced binary tree of n levels deep, and then query for the
size of this tree, where we measure the time for querying the size of the tree. This
program is also highly parallel, but is much more memory intensive than nfib.

For each algorithm, we have implemented two variants. One is written in our prototype
language, and one implementation is written as a primitive function that is implemented
in Java. We refer to the second implementation as the ’native’ implementation. The rea-
son for implementing the algorithms natively as well, is that this allows us to simulate the
performance of our graph reduction method for a compiled functional language.

We have run two different sets of benchmarks. First, we measured the relative speedup by
executing the algorithm with one up to 48 threads, and dividing the measured execution
time with the execution time when using a single thread. Second, we measured the
overhead of our parallel graph reducer compared to our serial graph reducer.

During benchmarking the execution time of a program may differ between runs. Causes
for this include the non-determinism from multiple threads interacting, the Java garbage
collector, as well as background tasks on the testing system. To compensate for this in
our benchmarks, we execute each configuration multiple times, and take the median of
the execution time. We chose to use the median instead of the average as this is more
robust against outliers.

94

9.2. Parallel Graph Reduction

6 12 18 24 30 36 42 48

6

12

18

24

30

36

42

Threads

S
p
ee
d
u
p

treesize
treesize-native

nfib
nfib-native

nfib-native-chunks

Figure 9.1.: Relative speedup.

Relative Speedup

Figure 9.1 shows the relative speedup that we have measured. The dashed line shows
the ideal speedup that can be achieved, assuming a linear speedup as the number of
threads increases. The vertical lines show the boundaries of the processor nodes of our
testing system.

Using up to twelve threads, for both example programs we managed to get a relative
speedup of around 10.6x, and for the non-native nfib program, we even got a speedup
of 11.5x. These speedups are very good, considering that they are close to the ideal
speedup of 12x. We think that the speedup is not ideal due to communication overhead
between the reduction threads, and due to speculative evaluation of redexes.

Using up to 48 threads, the relative speedup scales even further for the nfib programs,
up to 34x for the non-native nfib program, and up to 32x for the native nfib program.
For the non-native treesize program we get a relative speedup of about 21x and for the
native version we got a speedup of about 15x. As soon as more than one processor node
is used, the increase in speedup suddenly drops for the treesize program. We suspect
that this happens because the threads have to access memory on another NUMA node

95

9. Experiments

when scaling beyond one node, which takes longer than accessing memory locally. The
nfib program does not show this behaviour, and keeps scaling quite well beyond one
processor node. We think that this is because the nfib program is much less data
intensive than the treesize program.

Overhead of the Parallel Graph Reducer

treesize treesize-native nfib nfib-native
Serial 2666 ms 819 ms 3294 ms 626 ms
Parallel 3243 ms 1291 ms 4162 ms 819 ms
Overhead 21.6% 57.6% 26.4% 30.1%

Figure 9.2.: Comparison of serial and parallel graph reduction.

Figure 9.2 shows concrete execution times obtained from our serial graph reducer and
our parallel graph reducer, and the overhead of parallel graph reduction compared to
serial graph reduction. The overhead of the treesize-native program is twice as large
as for the other programs. We suspect that this is because the treesize function has
to also reduce the tree, which requires additional communication compared to the nfib
program to share the results of this computation. Furthermore, sharing reduction results
represents a larger proportion of the execution time for the treesize-native program
than for the non-native treesize program, which might explain the large difference in
overhead between the two.

Discussion

An interesting result is that we could exploit the inherit parallelism of functional pro-
grams without using annotations to limit concurrency. However, as discussed in Sec-
tion 6.2, fully lazy programs can not be parallelised without annotations using this
method, as laziness forces programs to be executed sequentially. However, our method
depends on laziness to share results early. Using eager evaluation, the sharing nodes are
only updated once the eager computation has been completely evaluated. So to use this
method, we either have to annotate programs to introduce parallelism explicitly, or there
has to be a mix between lazy evaluation and eager evaluation. Furthermore, the ratio
between the amount of lazy evaluation and eager evaluation determines the amount of
communication overhead and speculative execution. Performing a higher ratio of work
eagerly leads to lower communication overhead, but to higher levels of speculation. Vice
versa, performing a higher ratio of work lazily leads to higher communication overhead,
but to lower levels of speculation.

We have to note that our experiments with this method of graph reduction are lim-
ited. The reason for this is that our main focus is on transaction processing, and not
the development of a parallel graph reducer. Further investigation with more complex
algorithms is needed to further evaluate the parallel graph reducer.

96

9.3. Transaction Processing - Concurrency

9.3. Transaction Processing - Concurrency

In this section, we discuss experiments to investigate the behaviour of our prototype
implementation when executing update transactions concurrently with read transactions.
We want to show that there is overlap in the execution of transactions, and we want
to measure how this overlap affects execution times of transactions and the memory
usage.

Setup

All benchmarks are run on a state that is initialised with a map that contains a mapping
from the keys {0, . . . , n} to the value 0, where n depends on the specific benchmark. The
map is implemented as a binary search tree. As we do not have an algorithm to balance
trees dynamically without blocking access to the map, we use a non-balanced tree for the
map implementation. Values are inserted in a random order as to obtain a reasonable
on-average balancing of the tree.

For this benchmark we use only a single thread, so we only measure concurrency obtained
through lazy reduction of the state. This means that we only measure concurrency
between one transaction that reads the state and multiple transactions that update the
state. At the start of the benchmark, we update the state to increment all values in
the map by one. This new state is constructed lazily, meaning that only those parts
of the state are evaluated that are actually read. To perform our benchmarks, we read
individual values at random from the map, chosen by the benchmarking program. When
we read a value, only that part of the state is reduced that is needed to produce the
requested value.

Response Time

In our first benchmark, we want to show that transactions are actually executed concur-
rently. To do this, we update the state, and we read a randomly chosen value from the
map in the updated state and measure the response time. Next, we force the reduction
of the new state, and show that the time required for full reduction is much higher than
for reading just a single value. Thereby we essentially show that the read transaction
must have been performed concurrently with the update transaction.

update read force
1 update 89 µs 97 µs 1405 ms
2 updates 144 µs 149 µs 2390 ms
4 updates 269 µs 125 µs 4323 ms
8 updates 516 µs 255 µs 8214 ms
16 updates 1062 µs 387 µs 16402 ms

Figure 9.3.: Transaction execution times.

Table 9.3 shows the results of our experiments. We executed the benchmark for one up
to 16 updates prior to reading the state. The table show that updating is very quick

97

9. Experiments

in all cases, because the new state is not constructed until it is read. Next, we can
see that reading a random value from the updated state is very quick as well. This is
because only those parts of the updated state are evaluated that are required to fetch the
value being read. Finally, we forced the reduction of the new state to show the actual
execution time for full reduction of the state. This benchmark essentially shows that
the execution of the read transaction was done concurrently with constructing the new
state. Showing that reading and updating the state is performed concurrently because
of lazy evaluation of the state.

Effect on Throughput

In the second benchmark, we want to measure how an update transaction affects the ex-
ecution time of concurrent read transactions. As a baseline, we measure the transaction
throughput when no updates are going on. We then update the state, and measure the
throughput of read transactions

100 1,000 10,000 100,000
0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

Number of transactions executed after update

T
ra
n
sa
ct
io
n
s
/
S
ec
on
d

no updates
1 update
2 updates
4 updates
8 updates
16 updates

Figure 9.4.: Influence of updates on transaction throughput for a map of size 10,000.

Figure 9.4 shows how the throughput of read transactions is affected by concurrent up-
date transactions. For the first few transactions, quite a lot of work has to be performed
to get to a leaf node, where the amount of work depends on the amount of update
transactions executed. This means that initially the performance is much lower than
the case without updates. As more read transactions are executed, increasingly less

98

9.3. Transaction Processing - Concurrency

work has to be performed as a larger part of the state has been reduced. When enough
read transactions have been executed, performance goes up to nearly the level when no
updates where executed.

Effect on Memory Usage

In the final benchmark, we want to measure how an update transaction affects the
memory usage when executing concurrent read transactions. Here we essentially do the
same as the previous benchmark, but instead we measure the memory usage at certain
points during the benchmark.

100 1,000 10,000 100,000 1,000,000

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

4,500,000

Number of transactions executed after update

M
em
or
y
u
sa
ge
d
iff
er
en
ce
si
n
ce
u
p
d
at
e
in
b
y
te
s no updates

1 update
2 updates
4 updates
8 updates

Figure 9.5.: Influence of updates on memory usage for a map of size 10,000.

Figure 9.5 shows the memory usage of our prototype while read transactions are executed
on a lazily updated state. Memory usage increases during the execution of a read
transaction because redexes are created for all side-branches in the tree while reducing
the main branch to get to the value we requested. Intuitively, memory usage should go
down at a certain point when the majority of the values have been read, as most redexes
should be evaluated by then. We did not observe this behaviour in our prototype, and
profiling showed that there are two reasons why this is the case.

One problem is that from the state root, a reference is kept to all sharing nodes, even
when they all have been reduced already and are not needed anymore. When the bench-
marks starts, there is just one sharing node for the map function at the root of the tree.

99

9. Experiments

After all reads have been processed, this initial sharing node points to its result, which
now contains two sharing nodes. This continues recursively, such that almost all data
nodes have a sharing node.

Another problem, which accounts for the majority of the increase in memory usage, is
due to our map data structure implementation. The map function is pushed into the leaf
nodes of the map data structure, but the leaf nodes never have to be evaluated for any
read. This means that when each value has been requested in the map, each terminating
tree branch contains a sequence of update redexes applied to its leaf node.

This last problem shows a general problem with the theoretical model of using lazy
reduction of state for concurrency, because even in a theoretical setting such space leaks
will show up. A general solution to solve both problems is to force the evaluation of
update transactions. This will clean up the sharing nodes, as well as forcing the reduction
of the redexes applied to the leaf nodes. In Section 7.4 we discuss this solution in more
detail.

9.4. Transaction Processing - Throughput
In our final set of experiments, we measure how transaction throughput scales with
increasing load on the system. First, we discuss how our experiments are set up. Then,
we investigate throughput for read transactions. Next, we investigate throughput for
update transactions, and finally we investigate how our prototype behaves for a mix of
read and update transactions.

Setup

We use essentially the same setup for the state as for the concurrency experiments, where
we map the values {0, . . . , 100, 000} to the value 0. For these experiments, we issue two
types of transactions to the system: update transactions that update a single value, and
read transactions that read a single value. As to not overload the system with lazily
evaluated updates to the state, an update transaction also read the value it has written,
forcing the evaluation of all redexes.

To simulate increasing load on the system, we use multiple threads to issue transactions.
We use more threads than the available cores in our benchmarking system, as in practice,
load may also increase beyond what a machine is able to handle. To create a mix of read
and write transactions, each thread chooses whether to issue a read or write transaction
at random, weighted by the ratio of reads and writes we want to measure. The graphs
in this section only show the total transaction throughput, to obtain the transaction
throughput of only reads or only writes, we can simply multiply the total throughput
by the ratio.

As we now use multiple threads, the way we sequence transactions will now affect perfor-
mance. In the benchmarks we measure the transaction throughput for both a readers /
writers lock approach to sequencing, as well as the lockless readers approach, as discussed
in Section 7.3.

100

9.4. Transaction Processing - Throughput

Only Read Transactions

1 2 4 8 16 32 64 128 256
0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

Concurrent Transactions

T
ra
n
sa
ct
io
n
s
/
S
ec
on
d

R/W Lock (4x 12-core)

R/W Lock (1x 6-core)

Lockless Reads (4x 12-core)

Lockless Reads (1x 6-core)

Figure 9.6.: Transaction throughput of reads.

First, we investigate the throughput of read transactions. Figure 9.6 shows the through-
put that we have measured. We see that the lockless approach scales very well, from
36,262 transactions per second when there is no concurrency, up to 1,121,480 trans-
actions per second with 64 concurrent transactions per second, a relative increase in
throughput of 30.9×. With 256 concurrent transactions, throughput drops to 962,694,
probably due to overhead of scheduling the threads.

The locking approach scales much worse, from 35,588 transactions per second using one
thread, to 331,801 transactions per seconds with twelve threads, and back to 179,441
transactions per second using 24 threads, after which throughput remains stable. We
found that the bottleneck here is locking, because as soon as multiple processor nodes
start contending for the lock, there is a lot of communication between the processors. A
NUMA aware lock [34] might solve this problem, but we could not test this, as we did
not have an implementation of this available in Java.

We have validated that locking is the cause of the bottleneck by running the benchmark
using only a single NUMA node of six cores. This can be seen in the graph as the
measurements labelled with (1x 6-core). Now we see that there is no slowdown after a
peak performance of 230,421 transactions per second is reached using the locking. We
also see that the sustained throughput of the locking approach with six cores is 28%
higher than when using all 48 cores. Additionally, we see that the locking approach
performs about equal to the lockless approach when using six cores.

101

9. Experiments

Only Update Transactions

1 2 4 8 16 32 64 128 256
0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

Concurrent Transactions

T
ra
n
sa
ct
io
n
s
/
S
ec
on
d

R/W Lock (4x 12-core)

R/W Lock (1x 6-core)

Lockless (4x 12-core)

Lockless (1x 6-core)

Figure 9.7.: Transaction throughput of updates.

Now we investigate the throughput when only executing update transactions. Figure 9.7
shows the throughput that we have measured. We again see that the locking mechanisms
in both approaches suffer from communication overhead as discussed in the previous
benchmark. The locking approach peaks at 171.337 transactions per second at 13 con-
current requests, while providing a sustained throughput of around 84.000 transactions
per second starting around 20 concurrent requests.

The lockless reads approach peaks at a throughput of 93.139 transactions per second
at eight concurrent requests, and maintains a sustained throughput of around 49.000
transactions per second from about twelve concurrent requests. The reason that the
throughput of the lockless reads approach is much lower than the locking approach is
because the lockless reads approach copies the state bindings for every update, as to
provide atomic updates for reads, while the locking updates the bindings in-place.

When using only six cores, we see that the peak transaction throughput is about equal
to the sustained throughput. This is about 102.000 transactions per seconds for the
locking approach, and about 80.000 transactions per seconds for the lockless reads ap-
proach.

102

9.4. Transaction Processing - Throughput

1 2 4 8 16 32 64 128 256
0

50,000

100,000

150,000

200,000

Concurrent Transactions

T
ra
n
sa
ct
io
n
s
/
S
ec
on
d

R/W Lock (4x 12-core)

R/W Lock (1x 6-core)

Lockless Reads (4x 12-core)

Lockless Reads (1x 6-core)

Figure 9.8.: Transaction throughput for a mix of 50% reads and 50% updates.

Mixed Reads and Update Transactions

Finally, we investigate the throughput when executing a mix of read and update trans-
actions. Figure 9.8 shows the throughput for a mix of 50% read transactions and 50%
update transactions. What we see is essentially not much different from the experiment
where we only perform update transactions, because the transactions are still dominated
by locking. However, the lockless reads approach now performs significantly better when
using all 48 cores, compared to the results of the update only experiment, as reads are
not affected by the locking bottleneck.

Figure 9.9 shows the throughput for a mix of 90% read transactions and 10% update
transactions. Now we see that the lockless reads method scales quite well, similar to the
results in the read only experiment. However we do still see a drop in performance as
concurrency increases beyond 44 concurrent transactions.

Discussion

In general, we found that using a single NUMA node, throughput scales very well.
However, using multiple NUMA nodes, locking proves to be a major bottleneck. One
approach to solve this would be to use NUMA aware locking techniques [34]. Another
option is to investigate a full lockless approach, where binding is performed lazily, and
is forced by reading the state. A more advanced approach could be to make the system
NUMA aware, distributing the database over multiple NUMA nodes, and migrating
reduction threads as much as possible to the NUMA node where the data is.

103

9. Experiments

1 2 4 8 16 32 64 128 256
0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

Concurrent Transactions

T
ra
n
sa
ct
io
n
s
/
S
ec
on
d

R/W Lock (4x 12-core)

R/W Lock (1x 6-core)

Lockless Reads (4x 12-core)

Lockless Reads (1x 6-core)

Figure 9.9.: Transaction throughput for a mix of 90% reads and 10% updates.

9.5. Conclusions

In this chapter we have discussed the results of our experiments using our prototype
implementation. In summary, we have found the following results:

• Our parallel graph reducer can exploit implicit parallelism in two simple programs,
without the need of annotations.

• Transactions that read the state can be executed concurrently with transaction
that update the state, resulting in very low response times after large updates
have been applied.

• Large updates affect the throughput performance of subsequent reads, but the
performance recovers as parts of the state have been reduced.

• Reducing states lazily leads to memory leaks, which shows a problem with the
theoretical model in practice, we have also provided a theoretical solution to this
problem.

• We have found that transaction throughput scales well with an increasing number
of concurrent transactions on a single NUMA node, however when using multiple
NUMA nodes locking is a bottleneck due to high contention.

There is still work to be done on resolving the problem of memory leaks and high con-
tention for the lock, but in general we can conclude that our prototype implementation
shows promising results.

104

10. Related Work

Aside from the work by Trinder [38] and Nikhil [28] on which we build, other work has
been done that is closely related to our work. In this chapter we first discuss related work
in imperative persistent languages. Next, we discuss related work on functional persistent
languages. Finally, we discuss related work in graph reduction using randomisation and
result sharing.

10.1. Imperative Persistent Languages

The first efforts to integrate transparent persistence with programming languages is
the language PS-Algol [4]. More recent efforts to integrate programming with persis-
tence include Persistent Haskell [14] and Persistent Java [25]. Each of these approaches
extends an existing programming language with support for automatic persistence of
state. In these approaches, objects can be marked as persistent roots, and the system
automatically ensures that any object reachable from these roots is stored in persistent
memory.

A benefit of these approaches is that they re-use an existing programming language,
which makes them more flexible in communication to the outside world than our ap-
proach as there is no pre-defined interface. However, these approaches do not provide
an interactive interface to execute ad-hoc transactions. The absence of ad-hoc trans-
action support has been a problem for the evolution of programs implemented in these
languages, as it is difficult to change the structure of existing data. Another difference
from our model is that these approaches only provide transaction support at the data
level, so they are susceptible to problems such as blocking and starvation.

Another approach is Prevayler for Java [2], which is a library that provides mechanisms
for transparent persistence and transaction support to Java. In this approach, the pro-
grammer implements a fixed set of transactions. Transactions are executed sequentially
to avoid concurrency conflicts. Durability is guaranteed by journaling transactions and
checkpoints of the state are created by serialising the state. The main strength of this
approaches is the simplicity of implementation. However, it suffers from many of prob-
lems as the persistent outlined above. Additionally, the state is limited to main-memory,
and it does not support concurrent execution of transactions.

Yet another approach are object databases [17], which avoid the object-relational impedance
mismatch by using the object model as the data model for the database. Object

105

10. Related Work

databases usually support the object query language to perform ad-hoc queries. Addi-
tionally, an object-oriented programming language can be built into an object-database,
making object databases similar to persistent languages. To manage concurrent exe-
cution of transactions in object-databases, usually concurrency control techniques from
databases are used. However, this means that transactions can still be aborted due
to concurrency control issues, providing the possibility of starvation when performing
large updates. In contrast, our approach derives concurrency from the parallel nature of
functional languages, having the benefit that transactions are never aborted, allowing a
higher level of concurrency than traditional concurrency control methods, and allowing
transactions to be executed in parallel.

10.2. Functional Persistent Languages

In 1991, Nikhil and Heytens [29] described the implementation of the persistent object
system AGNA, which is based on a functional language. The main focus in his implemen-
tation is to exploit the parallel nature of functional programs for the parallel execution
of transactions, and the implementation of storage of states in persistent memory. While
they implemented parallel execution of individual transactions, they did not implement
the concurrent execution of multiple transactions simultaneously. Furthermore, their
persistence method does allow storage of states larger than main memory, which is im-
plemented by paging memory from persistent storage in main memory. However, their
implementation does not address durability, and they do not consider snapshotting of
ongoing computation.

In 1993, Akerholt et al. investigated the performance of their parallel graph reducer
GRIP [3] for functional transaction processing. While the main focus of their work is
GRIP, they implemented the functional transaction processing model by Trinder [38],
which supports concurrent execution of transactions. However, in their experiments they
only evaluated the parallel speedup of their graph reducer, and they did not investigate
the behaviour of transactions when executing concurrency. Further, they did not address
persistence or interaction models.

In 1993, McNally [26] investigated methods for the interaction with functional persistent
languages, as well as creating a practical implementation of a persistent functional lan-
guage called STAPLE. McNally developed two interaction models, a stream persistence
model that allows the interactive evaluation of expressions in an environment, and a
module based persistence model to load pre-defined modules into the system. McNally
uses an of-the-shelf persistent object store [9] to implement transparent persistence. The
STAPLE system uses the PCASE machine developed by McNally, which operates di-
rectly on the persistent object store, thereby providing transparent persistence of data,
as well as persistence of ongoing computation.

Stored transactions in our language are similar in functionality to the module based per-
sistence approach by McNally, as they support the definition of pre-defined transactions.
However, STAPLE only supports the addition and removal of bindings in the module

106

10.3. Parallel Graph Reduction

based persistence model, and during interactive sessions bindings can not be created or
removed. Our prototype implementation does support adding and removing of bindings,
which is implemented by resolving references to templates statically. Our approach to
persistence differs from the approach chosen b McNally in that we do not use a persistent
object store to implement persistence. Instead, we have investigated methods that are
optimised for functional languages. Furthermore, a limitation of STAPLE is that it does
not support concurrent execution of transactions.

A more recent project is that integrates functional languages with transactions and per-
sistent storage is ACID State for Haskell [1]. It is similar to Prevayler as discussed in the
previous section, however is does support concurrent execution of transactions by forking
a reduction thread for every update to the state. We will further study their approach
to see how concurrent execution of transactions differs from our approach.

10.3. Parallel Graph Reduction

The idea of randomisation and result sharing for load balancing of work in parallel
systems has already been applied successfully in the context of model checking for the
parallel exploration of state-spaces [16]. The study of results in this field may lead to
interesting insights for parallel graph reduction.

An approach similar to ours been studied for the parallelisation of operations on binary
decision diagrams in the context of symbolic model checking by van Dijk [15]. Different
from our approach, they have implement result sharing through a lockless memoisation
cache, and they use a fast random number generator to implement randomisation of
threads. Furthermore, they have compared the work-stealing approach, implemented
using Cilk [8], to randomisation and result sharing, and found that randomisation and
result sharing performs about equal to the work-stealing approach.

107

11. Conclusions

In this thesis we explore the development of a persistent functional language for con-
current transaction processing. In this chapter, we first discuss how our contributions
achieve the goals that we set out in the introduction. Finally, we discuss directions for
further research.

11.1. Goals and Contributions

In the introduction we have described the goals that we want to achieve in this thesis.
In this section we describe how our contributions have achieved these goals.

Development of a Transactional Functional Language

The first goal of this thesis is the development of a functional language for transaction
processing.

In Chapter 4 we have developed of a language that can be used to describe functional
transactions. A transaction in this language describes updates to the state, and may
contain a result expression that is evaluated in the context of the current state. The key
feature of our language is that we introduce two kinds of variables, one that refers to the
current state, and one that refers to the next state. Furthermore, we introduced stored
transactions, which can be invoked through an external interface, providing a basic
building block for the implementation of transaction processing applications.

In Chapter 5 we have developed a graph reducer that serves as the basis for the imple-
mentation of our language. The main feature of our graph reducer is that it allows the
dynamic creation of functions. Instead of maintaining a global environment of function
templates as is done in template instantiation, we statically resolve references to function
templates. This makes function templates anonymous such that they can be garbage
collected automatically.

Finally, in Chapter 7 we have developed a transaction manager for our language model.
The transaction manager allows the execution of a stream of transactions on a state,
producing a stream of results.

Concurrent Execution of Transactions

Our second goal is to allow concurrent execution of transactions. Concurrency is already
partly supported through lazy reduction of states, but we also need to support parallel
reduction of states, and correctly handle concurrent updates of the system state.

109

11. Conclusions

To support parallel reduction of states, in Chapter 6 we have developed a new method
for parallel graph reduction. Our method is based on correctly sharing reduction results
between threads to allow concurrent reduction, and randomising the reduction order
of strict function arguments to perform load balancing to allow parallel reduction. In
Chapter 9 we show that our method is able to obtain a nearly ideal relative speedup on
a single multi-core processor for some simple programs. Interestingly, we did not have
to annotate our program with parallelisation strategies to achieve a decent speedup, in
contrast to work-stealing approaches to load-distribution.

In Chapter 7 we have developed two methods to handle concurrent updates to the state.
One method is based on locking the state for every operation, and allowing operations
to update the state in-place. The other method is based on updating states atomically,
allowing reads to be lockless. In our experiments in Chapter 9 we found that for a high
update load, updating in-place performs better, while for high read loads there is little
difference between both methods. A limitation of our experiments is that our locking
implementation is not NUMA aware, so we could not measure the performance of both
methods accurately on a NUMA system.

In Chapter 9 we have also performed experiments with concurrency solely through lazy
evaluation of states. We found that space leaks may build up in the state due to lazy
evaluation. Also, we found that lazy evaluation may lead to long chains of redexes
in the state, which caused stack overflow errors in our prototype implementation. We
have developed a theoretical solution to this problem, where we force the evaluation of
transactions and limit the number of concurrent transactions in progress.

Efficient Persistence

Our third and final goal is to efficiently store functional states in persistent mem-
ory.

In Chapter 8 we investigated three methods to store functional states in persistent mem-
ory: snapshotting, log-structured storage and a combined approach. Each method sup-
ports durability of transactions that update the state through journaling. Snapshotting
allows the creation of checkpoints of ongoing computations, but it only supports states
that fit in main-memory, and it suffers from long recovery times. Log-structured storage
allows states that are larger than main-memory, and has nearly instant recovery times,
but it does not support checkpointing of ongoing computations. We combined both
approaches where we use snapshotting for the unevaluated part of the state, and we
use log-structured storage for the evaluated part of the state. The combined approach
allows states larger than main-memory, snapshotting of ongoing-computations, as well
as quick recovery times.

Finally, as a proof of concept that our language can indeed support persistence, we have
implemented journaling together with a simple variant of the snapshotting approach
that does not allow snapshotting of computations.

110

11.2. Limitations

11.2. Limitations

While we have developed a persistent functional language, the main limitation of our
work is that we have not explored the use of this language in practice. That is, we have
not developed an actual DBMS, or implemented a realistic transaction processing system
in our language. However, this thesis is only the first step of a much larger project where
we plan to investigate these topics by means of a case study.

A limitation of our approach to persistent functional languages is that we only consider
shared memory systems. Compared to the traditional approach, we can not integrate
data from multiple DBMS’s in an application, and we can not perform transactions
between multiple systems. Additionally, our system is a single point of failure in our
current architecture, and we can not distribute workload or data storage among multiple
systems. We hope to address these issues in future investigations.

11.3. Future Work

In this section we present ten directions for further research towards the goal of using
functional language for transaction processing.

Implementation: We will investigate the implementation of forcing the evaluation of
transactions as discussed in Chapter 7. We will also investigate the implementation
of our methods to store states in persistent memory, as discussed in Chapter 8.

Functional Databases: In this thesis we have not discussed the application of our lan-
guage for the construction of functional databases. We will investigate the imple-
mentation of data models and common database features in our prototype lan-
guage. Furthermore, we also want to investigate the possibilities of adding DBMS
features such as role based security mechanisms and automatic consistency checks.

Handling Runtime Problems: In practice we encounter runtime problems such as run-
ning out of memory, stack overflows, and non-termination. For example, if we
execute a transaction that does not terminate while constructing a new state, we
need a method to undo the execution of this transaction. Further research is
needed to handle such situations.

Type Checking: We will investigate how types can be defined and checked dynamically
in our language model. One of the challenges here is that type checking must be
performed as part of a transaction, as types may change between type checking
a transaction and executing a transaction. Additionally, methods need to be de-
veloped to allow data types to be redefined, to allow evolution the of database
schemas.

Concurrent Data Structures: Algorithms and data structures that provide concurrency
between transactions under lazy evaluation have not yet been investigated in ex-
isting literature. In particular, a concurrent functional balanced search tree is

111

11. Conclusions

required for the implementation of functional databases. Expressions can be writ-
ten in multiple ways, with the same result, but with different behaviour regarding
concurrency between transactions. We will formalize the notion of concurrency of
functional transactions, and investigate the automatic optimisation of expressions
to remove concurrency bottlenecks.

Optimistic Concurrency Control: Concurrency obtained through lazy evaluation will
not be enough for all situations. Sometimes transactions in this model will sim-
ply block access to the database due to functional dependencies. To resolve this
problem we will investigate the possibilities of introducing optimistic concurrency
control for updates. One idea is to split a transaction into multiple transactions
that are each non-blocking, but which preserve the ACID properties as a whole.
We will investigate the correctness and composition of such transactions, as well
as the possibility of automatically splitting transactions to increase concurrency.
Additionally, this model may also provide a basis for interactive transactions.

Reducing Memory Usage: As a result of the experiments that we have performed on
our prototype, we found that the system uses quite a lot of memory. This is
because the data structure consists mostly of pointers, which produce a lot of
overhead. To resolve this problem, further research could look into data structures
that are more efficient regarding memory usage. An idea is to have trees with
wider branches, as this reduces the amount of pointers in the data structure. To
conveniently implement this, we think that an array data type would be convenient
in the language.

Parallel Graph Reduction: We have described a method to perform graph reduction by
sharing results between reduction threads, and randomisation of their reduction
order. However, our experiments with this method of graph reduction are of limited
scope, as it is not the main topic of this thesis. We have some ideas for further
research:

• It would be interesting to know how sharing results and randomisation com-
pares to the work-stealing approach. Additionally, it might be interesting to
investigate if work-stealing can be combined with result sharing and randomi-
sation. Also, further investigation of methods for the randomisation of the
reduction order of threads is needed.

• Communication overhead between threads can be reduced by increasing the
granularity of tasks. An approach to do this is to mix lazy evaluation and
eager evaluation, as discussed in Section 9.2. It would be interesting to inves-
tigate this further, and develop methods to do this automatically.

Scheduling: In our current implementation we use the operating system scheduler to
schedule the execution of concurrent transactions by assigning a fixed number
of graph reduction threads to each transaction. We will investigate scheduling
of reduction on a fixed number of operating system threads, as to reduce the

112

11.3. Future Work

overhead of spawning threads. Additionally, sometimes the evaluation of updates
may become irrelevant due to newer updates. In our current model these reduction
of these updates will continue until normal form is reached. It would be more
efficient if reduction that is not relevant anymore could be stopped. An idea is to
remove these from the schedule during garbage collection.

Distributed Persistent Languages: Another direction for future research is to investi-
gate the possibilities of distributing persistent functional languages over multiple
machines. One approach is to replicate the state among multiple computer systems
for increased performance of read-only transactions and for fault tolerance. Fur-
ther research can also look into methods for distribution of update transactions,
or sharding the state among multiple systems. Finally, it would be interesting
to investigate a model based on eventual consistency, which could lead to highly
scalable persistent functional languages.

113

Bibliography

[1] ACID State manual: http://happstack.com/docs/crashcourse/acidstate.html, Au-
gust 2012.

[2] Prevayler website: http://prevayler.org/, August 2012.

[3] Akerholt, G., Hammond, K., Jones, S. P., and Trinder, P. Processing
transactions on grip, a parallel graph reducer. In PARLE93, Parallel Architectures
and Languages Europe, number 694 in Lecture Notes in Computer Science (1993),
Springer, pp. 634–647.

[4] Atkinson, M., Bailey, P., Chisholm, K., Cockshott, W., and Morrison,
R. PS-algol: A Language for Persistent Programming. In 10th Australian National
Computer Conference, Melbourne, Australia (1983), pp. 70–79.

[5] Barendregt, H. P., and Barendsen, E. Introduction to Lambda Calculus
(Revised Edition), 2000.

[6] Ben-Ari, M. Principles of concurrent and distributed programming. Prentice-Hall,
Inc., 1990.

[7] Blackburn, S., and Zigman, J. N. Concurrency - the fly in the ointment?
In Proceedings of the 8th International Workshop on Persistent Object Systems
(POS8) and Proceedings of the 3rd International Workshop on Persistence and
Java (PJW3): Advances in Persistent Object Systems (1999), Morgan Kaufmann
Publishers Inc., pp. 250–258.

[8] Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E., Ran-
dall, K. H., and Zhou, Y. Cilk: an efficient multithreaded runtime system. In
Proceedings of the fifth ACM SIGPLAN symposium on Principles and practice of
parallel programming (1995), PPOPP ’95, ACM, pp. 207–216.

[9] Brown, A. Persistent Object Stores. PhD thesis, University of St Andrews, 1988.

[10] Bruijn, N. G. D. Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the church-rosser theorem.
Indagationes Mathematicae 34 (1972), 381–392.

[11] Brus, T. H., van Eekelen, C. J. D., van Leer, M. O., and Plasmeijer,
M. J. Clean: A language for functional graph rewriting. In Proceedings of Func-
tional programming languages and computer architecture (1987), Springer-Verlag,
pp. 364–384.

115

Bibliography

[12] Church, A. An unsolvable problem of elementary number theory. American
Journal of Mathematics 58, 2 (April 1936), 345–363.

[13] Codd, E. F. A relational model of data for large shared data banks. Commun.
ACM 26, 1 (Jan. 1983), 64–69.

[14] Davie, T., Hammond, K., and Quintela, J. Efficient persistent Haskell. In
Draft proceedings of the 10th workshop on the implementation of Functional Lan-
guages (1998), University College London, pp. 183–194.

[15] Dijk, T. The parallelization of binary decision diagram operations for model check-
ing. Master’s thesis, University of Twente, 2012.

[16] Dwyer, M. B., Elbaum, S., Person, S., and Purandare, R. Parallel ran-
domized state-space search. In Proceedings of the 29th international conference on
Software Engineering (2007), ICSE ’07, IEEE Computer Society, pp. 3–12.

[17] Garcia-Molina, H., Ullman, J. D., and Widom, J. Database Systems: The
Complete Book, 2 ed. Prentice Hall Press, 2008.

[18] Gray, J. The transaction concept: virtues and limitations (invited paper). In
Proceedings of the seventh international conference on Very Large Data Bases -
Volume 7 (1981), IEEE Computer Society, pp. 144–154.

[19] Gray, J., and Reuter, A. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Publishers Inc., 1992.

[20] Harris, T., and Singh, S. Feedback directed implicit parallelism. SIGPLAN
Not. 42, 9 (Oct. 2007), 251–264.

[21] Hearn, A. C. Standard lisp (reprint). SIGSAM Bull., 13 (Dec. 1969), 28–49.

[22] Hulse, D., and Dearle, A. A log-structured persistent store. In Proceedings of
the 19th Australasian Computer Science Conference (1996), pp. 563–572.

[23] Kifer, M., Bernstein, A., and Lewis, P. M. Database Systems: An Application
Oriented Approach, Complete Version (2nd Edition). Addison-Wesley Longman
Publishing Co., Inc., 2005.

[24] Marlow, S., Maier, P., Loidl, H.-W., Aswad, M. K., and Trinder, P.
Seq no more: better strategies for parallel haskell. In Proceedings of the third ACM
Haskell symposium on Haskell (New York, NY, USA, 2010), Haskell ’10, ACM,
pp. 91–102.

[25] Marquez, A., Blackburn, S., Mercer, G., and Zigman, J. Implementing
orthogonally persistent java. In Revised Papers from the 9th International Workshop
on Persistent Object Systems (2001), Springer-Verlag, pp. 247–261.

[26] McNally, D. Models for Persistence in Lazy Functional Programming Systems.
PhD thesis, University of St Andrews, 1993.

116

Bibliography

[27] Netzer, R. H. B., and Miller, B. P. What are race conditions?: Some issues
and formalizations. ACM Letters on Programming Languages and Systems 1, 1
(Mar. 1992), 74–88.

[28] Nikhil, R. Functional databases, functional languages. In Data Types and Per-
sistence, Proceedings of the First Workshop on Persistent Objects (1985), Springer-
Verlag, pp. 299–313.

[29] Nikhil, R. S., and Heytens, M. L. Exploiting parallelism in the implemen-
tation of Agna, a persistent programming system. In Proceedings of the Seventh
International Conference on Data Engineering (1991), IEEE Computer Society,
pp. 660–669.

[30] O’Sullivan, B., Goerzen, J., and Stewart, D. Real World Haskell, 1st ed.
O’Reilly Media, Inc., 2008.

[31] Peyton Jones, S., Ed. Haskell 98 Language and Libraries – The Revised Report.
Cambridge University Press, 2003.

[32] Peyton Jones, S., and Lester, D. Implementing functional languages: a tuto-
rial. Prentice Hall, 1992.

[33] Peyton Jones, S. L. The Implementation of Functional Programming Languages.
Prentice-Hall, Inc., 1987.

[34] Radovic, Z., and Hagersten, E. Hierarchical backoff locks for nonuniform
communication architectures. In Proceedings of the 9th International Symposium
on High-Performance Computer Architecture (2003), HPCA ’03, IEEE Computer
Society, pp. 241–.

[35] Rainey, M. A. Effective scheduling techniques for high-level parallel programming
languages. PhD thesis, University of Chicago, 2010.

[36] Su, Z., and Wassermann, G. The essence of command injection attacks in web
applications. In Symposium on Principles of Programming Languages (2006), ACM,
pp. 372–382.

[37] Tremblay, G., and Gao, G. R. The impact of laziness on parallelism and the
limits of strictness analysis. In Proceedings of high performance functional computing
(1995), pp. 119–133.

[38] Trinder, P. A Functional Database. PhD thesis, University of Oxford, 1989.

[39] Turner, D. A. Miranda: a non-strict functional language with polymorphic
types. In Proceedings of Functional programming languages and computer archi-
tecture (1985), Springer-Verlag New York, Inc., pp. 1–16.

117

