
Analysis of the Blocking Behaviour of Schema
Transformations in Relational Database Systems

Lesley Wevers B, Matthijs Hofstra, Menno Tammens,
Marieke Huisman, and Maurice van Keulen

University of Twente, Enschede, the Netherlands
l.wevers@utwente.nl,{m.hofstra,m.j.tammens}@student.utwente.nl

m.huisman@utwente.nl,m.vankeulen@utwente.nl

Abstract. In earlier work we have extended the TPC-C benchmark
with basic and complex schema transformations. This paper uses this
benchmark to investigate the blocking behaviour of online schema trans-
formations in PostgreSQL, MySQL and Oracle 11g. First we discuss ex-
periments using the data definition language of the DBMSs, which show
that all complex operations are blocking, while we have mixed results for
basic transformations. Second, we look at a technique for online schema
transformations by Ronström, based on triggers. Our experiments show
that pt-online-schema-change for MySQL and DBMS_REDEFINITION
for Oracle can perform basic transformations without blocking, however,
support for complex transformations is missing. To conclude, we provide
a solution outline for complex non-blocking transformations.

1 Introduction

Software is in constant need of maintenance, adaptation and extension. For ap-
plications storing and maintaining data in a database, a software change of-
ten involves restructuring of data, i.e., a schema change with an accompanying
conversion of the data. To ensure that no concurrency conflicts occur, many
relational database systems block access to the data during a schema change.
The effect is that concurrent transactions completely halt until the execution of
the schema change has finished, which could take many hours to days for large
databases. This is a real problem for systems that need 24/7 availability, such
as telecommunication systems, payment systems and control systems [5],[7].

Goals We experimentally investigate the blocking behaviour of online schema
transformations in current DBMSs. We look at the capabilities provided by the
standard SQL data definition language (DDL) as implemented by the DBMSs,
and we investigate a method developed by Ronström [6], which can perform non-
blocking schema changes on any DBMS that supports triggers. We investigate
basic transformations provided by the SQL DDL such as adding columns and
indexes, and we look at complex transformations that require multiple DDL
operations, such as changing the cardinality of a relationship, or changing the
primary key of a table. While the basic transformations are the most common,
these complex transformations are often needed in realistic transformations.



Contenders We investigate PostgreSQL, MySQL and Oracle 11g, which repre-
sent a large fraction of the DBMSs used in industry. We now provide a brief
overview of their capabilities for online schema transformations. First, Post-
greSQL does not provide non-blocking DDL, but it is interesting as it can per-
form many DDL operations instantaneously. Next, MySQL has recently added
support for online DDL1. In addition, a number of tools have been developed
in industry to perform online schema changes on MySQL using Ronström’s
method, including pt-online-schema-change2, oak-online-alter-table3, and the
online-schema-change tool developed at Facebook4. As these tools have similar
capabilities, we investigate pt-online-schema-change in our experiments as a rep-
resentative. Finally, Oracle 11g does not provide online DDL, but it can perform
non-blocking schema changes using the DBMS_REDEFINITION package5.

Approach For our experiment we have developed a benchmark [8] that extends
the standard TPC-C benchmark6 with basic and complex schema transforma-
tions. We run the standard TPC-C workload, while concurrently executing a
schema transformation, and measure the impact on the TPC-C throughput. An
important aspect of our benchmark is that schema transformations should be
correct, i.e., they should satisfy the ACID properties, they should be composable
to allow the execution of complex transformations, and ideally, transformations
should be specified declaratively. We briefly discuss our requirements and the
benchmark in Section 2, and we discuss our experimental setup in Section 3.

Results In Section 4 we discuss our experimental results for online transforma-
tions using the DDL provided by the DBMSs. We see mixed results for basic
transformations, while all complex transformations block the TPC-C workload.
In Section 5 we discuss the experimental results for Ronström’s approach us-
ing pt-online-schema-change for MySQL and Oracle’s DBMS_REDEFINITION
package. We see that pt-online-schema-change can perform all basic DDL opera-
tions without blocking, but it can not perform complex transformations. Oracle
can perform some complex transformations, but is limited to operations on a
single table. We summarize our results in Section 6, and in Section 7 we discuss
a solution outline to support complex non-blocking schema transformations.

Contributions The contributions of this paper are:
– An experimental investigation of the blocking behaviour of basic and complex

schema transformations using the DDL in PostgreSQL, MySQL and Oracle
11g, and using Ronström’s method as implemented by pt-online-schema-
change and Oracle’s DBMS_REDEFINITION.

– A solution outline for complex non-blocking schema transformations.
1 http://dev.mysql.com/doc/refman/5.6/en/innodb-online-ddl.html
2 http://www.percona.com/doc/percona-toolkit/2.1/pt-online-schema-change.html
3 http://openarkkit.googlecode.com/svn/trunk/openarkkit/doc/html/oak-online-alter-table.html
4 https://www.facebook.com/notes/mysql-at-facebook/online-schema-change-for-mysql/430801045932
5 http://docs.oracle.com/cd/B19306_01/appdev.102/b14258/d_redefi.htm
6 http://www.tpc.org/tpcc/spec/tpcc_current.pdf

http://dev.mysql.com/doc/refman/5.6/en/innodb-online-ddl.html
http://www.percona.com/doc/percona-toolkit/2.1/pt-online-schema-change.html
http://openarkkit.googlecode.com/svn/trunk/openarkkit/doc/html/oak-online-alter-table.html
https://www.facebook.com/notes/mysql-at-facebook/online-schema-change-for-mysql/430801045932
http://docs.oracle.com/cd/B19306_01/appdev.102/b14258/d_redefi.htm
http://www.tpc.org/tpcc/spec/tpcc_current.pdf


2 Benchmark

In an earlier paper we have defined requirements for non-blocking schema trans-
formations, based on which we have extended the standard TPC-C benchmark
to measure the impact of various types of schema transformations on the TPC-C
workload. In this section we briefly discuss the requirements and the benchmark.
More details can be found in our earlier paper [8].

Requirements We have defined requirements on the functionality of schema
transformations, and on their performance characteristics.

In terms of functionality, we assert that a schema transformation should sat-
isfy the ACID properties like any other transaction that updates the database.
Moreover, ideally, schema transformations should be specified declaratively. Sim-
ilar to queries, a user should not have to be concerned with how a transforma-
tion is executed, but only what the result of a transformation should be. For
instance, an implementation of the DDL satisfies this requirement if it provides
ACID guarantees for transactionally composed DDL operations. Moreover, the
system should provide a mechanism to update applications as part of the schema
transformation, e.g., by replacing stored procedures transactionally.

In terms of performance, a schema transformation should have minimal im-
pact on the performance of concurrent transactions. In particular, regular trans-
actions should not be blocked, should not experience excessive slowdown, and
should be able to complete without aborting. Moreover, the schema transforma-
tion itself should be able to commit while concurrent transactions are running,
and the time to commit from the start of the transformation should be mini-
mal. In our benchmark we measure the impact of schema transformations on the
OLTP throughput, and the time-to-commit of the transformation.

Transformations Our benchmark contains basic transformations as provided by
the SQL data definition language. Additionally, we also investigate bulk data
updates without changing the schema, which is required in many complex trans-
formations. Furthermore, our benchmark also contains a number of complex
transformations, which generally consist of multiple DDL statements. In partic-
ular, we look at creating a column derived from another column, changing the
cardinality of a relationship, and changing a primary key. Most transformations
involve the largest table in the TPC-C schema, and update the stored procedures
to allow the TPC-C workload to keep running on the transformed schema. A
detailed description of the benchmark cases can be found in our earlier paper [8].

Benchmark Process The execution of a benchmark case is done in four phases.
First, during the setup phase, we create a TPC-C database. Some benchmark
cases require a modification to the TPC-C schema, which we also perform in
this phase. Next, during the intro phase, we start the TPC-C benchmark load.
We wait for 10 minutes before starting the transformation, while measuring the
baseline TPC-C performance. Next, we start the transformation phase, where we
execute the benchmark transformation. We wait for it to complete, while logging



the begin and end time of the transformation. Finally, we wait for another 10
minutes while measuring the TPC-C throughput in the outro phase.

Benchmark Results As seen in Figure 1, we present the result of a benchmark
as a line graph that plots the TPC-C transaction execution rate over time. We
mark the start and commit time of the transformation with vertical lines, and
we show the time-to-commit under the x-axis. Moreover, we plot aborted and
failed transactions in red. The y-axis starts at zero transactions per second,
which corresponds to blocking behaviour. We do not show the absolute TPC-
C throughput as we are only interested in blocking behaviour and the relative
performance of TPC-C during and after a schema transformation compared to
the intro phase.

3 Experimental Setup

An implementation of our benchmark, and all experimental results can be found
on our website7. We use the TPC-C implementation HammerDB8 to create the
TPC-C database and to provide stored procedures. We use HammerDB to gen-
erate one database for each DBMS, which we backup once, and then restore in
the setup phase of every experiment. Before starting the introduction phase of
the experiment, we let the TPC-C benchmark run for ten seconds, as to give
the DBMS some time to warm up. To generate load on the system, and to mea-
sure the TPC-C performance, HammerDB provides a driver script. However, as
this script does not perform logging of transactions, we have ported the script
to Java and we have added logging facilities. For all experiments, we generate a
database of 30 warehouses, and we use 64 threads of load on the database. We do
not spawn new threads to start other transactions while a thread is blocked. For
the experiments we have used a quad-core Intel i7 machine with 16GB of RAM
and a solid-state drive. For the software we used Ubuntu Linux kernel 3.20.0,
PostgreSQL version 9.1.14, MySQL version 5.6.20, pt-online-schema-change ver-
sion 2.2.11, oracle 11g release 11.2.0.3.0, and HammerDB version 2.14.

Stored Procedures Many of our benchmark cases update the TPC-C stored pro-
cedures so that the workload can keep running after the transformation. As
such, we need support from the DBMS to change stored procedures as part of a
schema transformation. PostgreSQL provides transactional DDL which also sup-
ports transactional upgrades of stored procedures. In contrast, MySQL does not
have transactional DDL, and does not provide a mechanism to upgrade stored
procedures safely. This means that stored procedure upgrades in our MySQL
experiments are not atomic. Oracle provides editions, which allow switching be-
tween different versions of stored procedures safely. However, we found it difficult
to automate our tests using editions, and chose to use non-atomic updates of
stored procedures. This does not affect the results of our experiments.
7 http://wwwhome.ewi.utwente.nl/~weversl2/?page=ost
8 http://hammerora.sourceforge.net/

http://wwwhome.ewi.utwente.nl/~weversl2/?page=ost
http://hammerora.sourceforge.net/


4 Experimental Results: Data Definition Language

This section shows our experimental results for online schema transformations
using the data definition language in PostgreSQL, MySQL and Oracle 11g. First,
we look at basic operations, including column operations, index operations and
bulk data updates. To conclude, we investigate composition of DDL statements
to perform complex transformations.

4.1 Basic Transformations

Adding and Removing Columns Figure 1 shows the impact of basic column
operations on the TPC-C workload. Both PostgreSQL and Oracle can add a
column instantaneously, without noticeably interrupting the TPC-C workload.
MySQL can not add a column instantaneously, but uses its online schema change
functionality. Despite this, MySQL still shows a short period of blocking at the
start of the operation, and we see a significant reduction in throughput. When
adding a column with a default value, PostgreSQL and Oracle now materialize
the column being created, which results in a period of blocking. For MySQL
we see the same behaviour as the previous case. When removing a column,
PostgreSQL can perform this operation instantaneously, and MySQL can use
its online schema change feature. Interestingly, DROP COLUMN causes Oracle
to block. Oracle also allows a column to be marked as unused, which effectively
removes the column without reclaiming disk space. Disk space can be reclaimed
using DROP UNUSED COLUMNS, however, this is still a blocking operation.

Add column

0:01

postgresql

6:51

mysql

0:00

oracle

Add column
with a

default value

1:13

postgresql

6:55

mysql

30:19

oracle

Remove
column

0:01

postgresql

22:07

mysql

23:44

oracle

Fig. 1: Adding and removing columns.



Creating an index on
OL_DELIVERY_D.

14:55

postgresql

2:33

mysql

10:55

oracle

Creating an index
on OL_I_ID.

60:46

postgresql

11:57

mysql

11:23

oracle

Creating a unique
index on OL_I_ID.

144:46

postgresql

15:47

mysql

10:23

oracle

Fig. 2: Creating normal and unique indexes.

Creating Indexes Figure 2 shows the impact of creating indexes on the TPC-C
workload. We have created indexes on two columns with different workload:
the OL_DELIVERY_D column which is nullable and is not written on inser-
tion, while the OL_I_ID is being written to on insertion. All tested DBMSs
allow online creation of indexes. PostgreSQL shows a small impact on TPC-C
throughput, but behaves well. Oracle commits more quickly than PostgreSQL,
but shows periods of significant blocking after the commit, suggesting that Ora-
cle is creating the index in the background. We have run the experiment for three
hours after the commit, and have seen that this behaviour persists during this
period. Despite supporting online index creation, MySQL blocks for a significant
amount of time on when indexing the OL_I_ID column. We see that creating
a unique index has similar characteristics to creating a regular index, but the
time to commit for PostgreSQL and MySQL is longer. Removing indexes is an
instantaneous operation in all three DBMSs, so we don’t show their results.

Bulk Data Transformations For some transformations it is essential that we
can update data in bulk. An update statement differs from an ALTER TABLE
statement in that the schema is not changed. However, semantically it is a schema
transformation. Updating prices in a database to use a different currency is an
example of such a transformation. Moreover, bulk data operations are important
in many complex transformations to transform data or to move data between
tables. Where stored procedures may simply fail on a schema that it does not
expect, for bulk data updates this is not the case. As such, it is important that
bulk data transformations satisfy the ACID properties.



2:36

postgresql

OL_AMOUNT

2:53

mysql

OL_AMOUNT

0:51

mysql

C_BALANCE

Fig. 3: Bulk data transformations in PostgreSQL and MySQL.

Figure 3 shows the impact of a bulk data update on the column in the caption
using PostgreSQL and MySQL. We do not show results for Oracle, because it
could not execute the bulk update due to concurrency conflicts. In both cases,
we use the serializable transaction level to guarantee correctness. We see that
PostgreSQL takes a table lock to guarantee serializability, and blocks the TPC-
C workload. Interestingly, MySQL does not block the workload when updating
the OL_AMOUNT column, because it only locks the OL_AMOUNT column,
which is not being updated by the TPC-C workload. We ran the experiment on
the C_BALANCE column, which is being updated, and see that MySQL now
blocks toward the end of the operation. During the transformation, transactions
can still execute, as MySQL doesn’t take a complete table lock.

4.2 Complex Transformations

Transactional Composition A natural way to construct a complex transforma-
tion from DDL operations is to wrap them into a transaction. If every DDL
operation is non-blocking, commits instantaneously, and does not block other
transformations from starting after committing, then the composed transforma-
tion can also be non-blocking and instantaneous. However, all complex transfor-
mations that we have considered involve bulk data updates, which, as we have
seen in the previous section, is blocking in current DBMSs. When composing
an instantaneous transformation with a bulk data update, the instantaneous
operation can take a table lock, which is held during the bulk data update.

We see this behaviour in PostgreSQL, as shown in Figure 4 (top row). In the
leftmost experiment we have added a column OL_TAX whose value is derived
from an existing column. First, we add the new column, which is non-blocking
and instantaneous, and then we fill the column using UPDATE, which results
in a table lock. We see the same behaviour in all complex cases that we have
tested.

Non-transactional Composition MySQL and Oracle 11g do not provide trans-
actional DDL: they auto-commit after each DDL operation. However, MySQL
does support online DDL. Can we use this to perform complex transformations
correctly? As many operations require bulk data operations that can not be
performed without blocking, this is not possible in general.



3:43

postgresql

4:48

postgresql

1:46

postgresql

4:53

postgresql

12:28

mysql

24:44

mysql

9:39

mysql

14:18

mysql

Adding a derived
column OL_TAX.

Splitting
OL_DIST_INFO.

Giving each order
line its own carrier.

Giving each order
the carrier of the
first order line.

Fig. 4: Complex transformations in PostgreSQL and MySQL.

When composing non-blocking transformations non-transactionally, interme-
diate schemas are visible to concurrent transactions. If we keep using the original
stored procedures on these intermediate states, they can fail to execute, perform
erroneous operations, or encounter lost updates, which could damage the in-
tegrity of the database. We could update the stored procedures directly after
the commit of each transformation step to handle intermediate states. However,
this does not work for bulk data transformation, as the original stored proce-
dures will keep executing while the bulk data is in progress, which results in
concurrency conflicts. For instance, if we want to add a derived column, we can
first create a new column, and then fill it using a bulk update statement. How-
ever, while the update statement is in progress, the original transactions can
continue executing on the source column, which updates are not reflected in the
derived column, thus resulting in lost updates. To solve this, we could attempt
to update the stored procedures before the transformation starts, but this does
not solve the problem, as the new transactions can be blocked from writing to
the derived column while the bulk update is in progress.

Figure 4 (bottom row) shows results when performing complex transforma-
tions using the online DDL in MySQL, where we only update the stored pro-
cedures after the transformation. While the transformations are mostly non-
blocking, their results are incorrect in all cases because the TPC-C transactions
keep executing on intermediate transformation states, which results in lost up-
dates. In the second transformation, we also see many erroneous transactions
because we do not update the stored procedures after every transformation step.

4.3 Conclusions

Our experiments with MySQL, PostgreSQL and Oracle show that support for
non-blocking transformations using the DDL is rather weak. Most problematic



are adding columns with default values and performing bulk data updates. As
complex transformations regularly require bulk data updates, non-blocking com-
plex transformations are currently not possible at all. If non-blocking bulk up-
dates where possible, many complex transformations could in principle be per-
formed by adapting the stored procedures to intermediate states. However, this
would also be very costly to implement in terms of development effort.

5 Experimental Results: Ronström’s Method

Ronström proposed a method that allows changing of columns, adding indexes,
and horizontally and vertical splitting and merging of tables by using database
triggers [6]. The method works as follows. First, an interim table that matches
the desired schema is created. Next, triggers are created on the original table
that propagate any changes on the original table to the interim table. Next, data
is copied to the new tables in small batches, while performing the desired schema
transformation on the data. Finally, after copying the data, the original table is
replaced by the interim table. A benefit of Ronström’s method is that it can be
implemented on top of existing database systems that support triggers.

In this section, we investigate pt-online-schema-change, which implements
Ronström’s method for MySQL, and we look at the DBMS_REDEFINITION
package provided by Oracle 11g. While tools similar to pt-online-schema-change
could be implemented for PostgreSQL, to our knowledge, at the time of writing
no such tools are available.

5.1 pt-online-schema-change for MySQL

The pt-online-schema-change tool from the Percona Toolkit implements Ron-
ström’s method for MySQL. The tool accepts a single ALTER TABLE state-
ment, which it executes transactionally. Multiple transformations can be per-
formed using a single ALTER TABLE statement, but multi-table transforma-
tions and data transformations are not supported. It creates a new table with
the new schema, and copies the rows from the source table to this new table.
Copying is done in chunks of a certain size, which can be configured using two
strategies. First, a fixed chunk size can be specified, and second, a fixed time
per chunk can be specified. While a chunk is being copied, the copied rows are
locked for writing. A larger chunk size impacts concurrent transactions more due
to locking, while a shorter chunk size slows down the schema transformation.

Effect of Chunk Size and Load The chunk size and the TPC-C benchmark load
have a large effect on the performance of pt-online-schema-change. This is be-
cause pt-online-schema-change executes transactions in LOW PRIORITY mode,
to minimize slowdown for concurrent transactions. Figure 5a shows the behaviour
of MySQL when pt-online-schema-change is used to add a column with a TPC-C
load of 64 threads and chunk size 1,000. The time to commit is very long, about
102 minutes, much longer than the 6:51 used by MySQL to perform the same



operation. If we lower the TPC-C load from 64 threads to only 4 threads, and
keep the chunk size at 1,000, pt-online-schema-change commits in only 14:44, as
shown in Figure 5b. If we increase the chunk size to 10,000, pt-online-schema-
change completes in 4:17, as shown in Figure 5c, however, we also see a reduction
in TPC-C performance.

102:35

pt-osc

(a) Chunk size 1000,
load 64

14:44

pt-osc

(b) Chunk size 1000,
load 4

4:17

pt-osc

(c) Chunk size
10000, load 4

Fig. 5: Adding a column using pt-online-schema-change.

14:54

pt-osc

(a) Remove column

38:26

pt-osc

(b) Create index

129:29

pt-osc

(c) Create unique

Fig. 6: Experimental results for pt-online-schema-change.

Results Figure 6 shows experimental results for pt-online-schema-change on sev-
eral basic transformations. All basic DDL operations could be performed using
pt-online-schema-change, and impact on performance is generally acceptable.
Interestingly, pt-online-schema-change does not suffer from the initial period of
blocking that we have seen in experiments using MySQL’s online DDL. However,
pt-online-schema-change does not support bulk data operations, and can not be
used to perform transformations consisting of multiple DDL statements.

5.2 DBMS_REDEFINITION for Oracle

Since version 9i, Oracle provides the DBMS_REDEFINITION package, which
allows schema transformations to be performed using Ronström’s method. To
use DBMS_REDEFINITION, the following steps have to be followed. First, an
interim table has to be created with the desired schema. Next, the transformation
is started by defining a mapping from fields in the original table to fields in the
interim table, and by specifying a key that must be present in both the original
and interim table, which is used to propagate updates on the original table
to the interim table. Next, after the transformation is complete, objects such



as indexes, constraints and stored procedures can be added to the table. The
package provides a method to copy all existing objects from the original table
to the interim table. Finally, the transformation can be finished to replace the
original table with the interim table. This is a blocking operation, and takes
longer if the interim table is not synchronized with the original table.

39:44

oracle

42:34

oracle

Performing a bulk
data update.

Adding a derived
column OL_TAX.

Fig. 7: Experimental results for Oracle’s DBMS_REDEFINITION.

Figure 7 shows experimental results where we use DBMS_REDEFINITION
to perform a bulk data update, and to add a column whose value is derived
from another column. In general, we see that transactions can continue exe-
cuting during the transformation, but performance is poor, and there are pe-
riods during the transformation where the throughput drops to zero. Despite
this, DBMS_REDEFINITION allows any single-table transformation to be per-
formed. Both of these cases can not be handled by pt-online-schema-change.
However, transformations that involve multiple tables can not be performed, as
the source of the transformation must be a single table. Compared to using the
data definition language, this approach is more verbose, as the interim table
must be defined, and all objects on the table must be copied.

6 Analysis Results

Our experiments with basic DDL operations in PostgreSQL, MySQL and Ora-
cle 11g show mixed results. PostgreSQL can add and remove columns instanta-
neously and it can create indexes online, but blocks when adding a column with a
default value, and when performing bulk updates. MySQL provides online DDL
for adding and removing columns, but blocks for a significant period of time at
the start of the transformation. MySQL also supports online creation of indexes,
but our experiments show long periods of blocking at the end of the transfor-
mation. Similar to PostgreSQL, Oracle 11g can add columns instantaneously,
however, adding columns with default values and removing columns takes very
long, and blocks concurrent transactions. Bulk data updates are a problem in
all tested DBMSs. PostgreSQL and MySQL simply block, while Oracle 11g can
not execute the operation due to concurrency conflicts.

Using the DDL for complex non-blocking transformations is not possible in
any of the DBMSs. Using transactional DDL, PostgreSQL can generally per-
form all operations correctly, but blocks access to all affected tables during the



transformation. MySQL and Oracle do not support transactional DDL. Com-
posing non-blocking DDL operations non-transactionally is possible in general
by updating stored procedures after each transformation step, however, MySQL
and Oracle can not perform non-blocking data updates, which prevents us from
performing most complex transformations. Moreover, such an approach is non-
declarative, and can be costly to implement.

As an alternative to the DDL provided by the DBMSs, we have investigated
Ronström’s method. This method is interesting, as it can perform non-blocking
schema transformations based on blocking transformations in any DBMS that
implements triggers. The pt-online-schema-change tool shows that Ronström’s
method is a promising approach for basic online transformations: it can perform
all basic schema transformations without blocking, with the exception of bulk
data updates. However, complex transformation cases can not be handled by
pt-online-schema-change, as it only supports a single ALTER TABLE state-
ment at a time, and there is no support for UPDATE statements. Oracle’s
DBMS_REDEFINITION shows that Ronström’s method can also be used for
more complex single-table operations, but its implementation shows a significant
amount of blocking.

7 Solution Outline

Native Support With the existence of Ronström’s method, it could be argued
that DBMSs do not need to provide native support for online schema transforma-
tions, but only have to provide support for triggers and atomic updates of schema
meta-data. This is the approach that Oracle has taken with edition-based re-
definition9 and the DBMS_PARAL-LEL_EXECUTE package10. Edition-based
redefinition allows atomic updates of schema meta data and provides cross-
edition triggers that can transform data between versions of the schema. The
DBMS_PARALLEL_EXECUTE package can be used to avoid full table locks
while transforming data between versions.

A drawback of Ronström’s approach is that transformations can take a long
time to execute. Native implementations of Ronström’s method in DBMSs can
potentially be more efficient than external tooling. For instance, Løland and
Hvasshovd present Log Redo as an alternative implementation for Ronström’s
approach that avoids the use of triggers, and has minimal impact on perfor-
mance [3]. However, while more efficient implementations of Ronström’s method
could reduce execution time, this does not scale to very large databases.

On-the-fly Transformations An interesting alternative to Ronström’s method
is to perform transformations lazily, or on-the-fly. The basic idea is to commit
a transformation before transforming the data, and transform the data before
it is accessed. From the viewpoint of the user, this allows a transformation to

9 http://docs.oracle.com/cd/E11882_01/appdev.112/e41502/adfns_editions.htm
10 http://docs.oracle.com/cd/E11882_01/appdev.112/e40758/d_parallel_ex.htm

http://docs.oracle.com/cd/E11882_01/appdev.112/e41502/adfns_editions.htm
http://docs.oracle.com/cd/E11882_01/appdev.112/e40758/d_parallel_ex.htm


be executed instantaneously. Moreover, data can be transformed in the back-
ground during idle time. Lazy transformations have already been investigated in
the context of Object-Oriented database systems [1]. Additionally, Neamtiu has
shown that many relational schema changes can be performed on-the-fly [4].

Depending on the implementation, on-the-fly transformations have two ad-
vantages over Ronström’s method. First, they compose naturally: two on-the-fly
operations executed in sequence form an on-the-fly operation. Second, on-the-
fly transformations can be implemented to execute in-place or incrementally:
reusing storage space or garbage collecting parts of the original table that are
already transformed. This avoids the problem of additional memory consumption
for intermediate tables as seen in Ronström’s method.

A drawback of on-the-fly transformations is that they must be implemented
in the DBMS. Moreover, they provide overhead on data access, which increases
latency. Most importantly, instantaneous transformations and on-the-fly trans-
formations are limited to operations that can produce results on-the-fly. For
instance, it is not possible to create an index or check a constraint instanta-
neously, and lookups in very large tables that do not have an index can not be
done instantaneously. Consequently, composing a blocking transformations with
an on-the-fly transformation leads to a blocking transformation. This shows that
on-the-fly transformation by themselves are not a full solution to the problem.

Complex Operations using Ronström’s Method In his original paper, Ronström
has proposed the use of SAGAs to compose basic transformations into more
complex transformations [6]. The idea of SAGAs is to execute the individual
operations of a transaction as a sequence of transactions, where for each oper-
ation an undo operation is provided that can be used to rollback the complete
sequence of operations [2]. While SAGAs provide failure atomicity for composed
operations, they expose intermediate states of the transformation to concurrent
transactions. This requires applications that use the database to handle these
states, which is non-declarative and requires additional development effort.

However, we think that almost any relational transformation can be per-
formed atomically using Ronström’s method without the use of SAGAs. The
following is a sketch of the solution. First, to compose transformations, we can
chain interim tables, i.e., triggers on the original table propagate updates to the
first interim table, while triggers on the first interim table propagate updates to
a second interim table, and so on. Using multiple interim tables can require a lot
of memory. However, sequential transformations could potentially be combined
to use a single interim table. Second, we can define triggers on multiple tables
to propagate updates to one or more tables. This allows multi-table transfor-
mations. Finally, update propagation is inefficient for operations that require
lookups on tables that are not indexed. This can be solved by dividing a trans-
formation into two steps, where indexes are constructed in the first step, and
where the transformation is performed in the second step using these indexes.

From a practical viewpoint, manually implementing transformations using
this approach is quite complex, and optimizing such transformations even more
so. One has to reason about updates on all involved tables, and how these should



be propagated to interim tables. Data could be lost if certain triggers are missing
or wrongly implemented. To solve this, tooling could be developed to transform
declarative transformation specification into optimized execution plans.

Solution Outline Rönstrom’s method is essentially an optimistic concurrency
control method: it performs operations on a snapshot of the state, and repairs
any conflicts that arise from concurrent operations. As such, Ronström’s method
never blocks access to the state, but it requires additional memory to maintain
multiple versions of the state. Moreover, it can only commit after the transforma-
tion has been completely executed. On the other hand, an on-the-fly method is
essentially a pessimistic concurrency control method: it avoids conflicts by trans-
forming data before access, i.e., it blocks access to parts of the database until
the transformation for that part has been executed. However, on-the-fly meth-
ods can commit immediately, and require less memory compared to Ronström’s
method as they can perform transformations in-place or incrementally.

A solution to minimize time to commit would combine both approaches by
first using Ronström’s method to check constraints and prepare indexes, and
then performing the remainder of the transformation using on-the-fly methods.
However, if time to commit is not crucial, Ronström’s method could be preferable
in situations where predictable low-latency access to data is crucial.

Similar to declarative query support, we envision that DBMSs allow us to per-
form arbitrary schema transformations declaratively. As such, a DBMS should
provide a schema transformation optimizer that can construct a non-blocking ex-
ecution plan from a declarative specification of a schema transformation with the
goal of minimizing throughput reduction, access latency, memory consumption
and time to commit.

References

1. Ferrandina, F., Meyer, T., Zicari, R.: Implementing Lazy Database Updates for an
Object Database System. In: VLDB ’94. pp. 261–272 (1994)

2. Garcia-Molina, H., Salem, K.: Sagas. In: SIGMOD ’87. pp. 249–259. ACM (1987)
3. Løland, J., Hvasshovd, S.O.: Online, Non-blocking Relational Schema Changes. In:

EDBT ’06. pp. 405–422. Springer-Verlag, Berlin, Heidelberg (2006)
4. Neamtiu, I., Bardin, J., Uddin, M.R., Lin, D.Y., Bhattacharya, P.: Improving Cloud

Availability with On-the-fly Schema Updates. In: COMAD ’13. pp. 24–34. Computer
Society of India (2013)

5. Neamtiu, I., Dumitras, T.: Cloud software upgrades: Challenges and opportunities.
In: MESOCA ’11. pp. 1–10. IEEE (2011)

6. Ronström, M.: On-Line Schema Update for a Telecom Database. In: ICDE ’00. pp.
329–338. IEEE (2000)

7. Sockut, G.H., Iyer, B.R.: Online reorganization of databases. ACM Comput. Surv.
41(3), 14:1–14:136 (Jul 2009)

8. Wevers, L., Hofstra, M., Tammens, M., Huisman, M., van Keulen, M.: A Benchmark
for Online Non-Blocking Schema Transformations. In: DATA ’15 (2015)


	Analysis of the Blocking Behaviour of Schema Transformations in Relational Database Systems

