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Functional Programming
Imperative programming
● Execute instructions that mutate state
Functional programming
● Evaluate expressions that produce values

○ users.map(u => u.name)
○ users.filter(u => u.age < 18)
○ users.reduce(max, u => u.age)
○ users.orderBy(u => u.name)



Pure functional programming

Pure functions: stateless and deterministic
● Lazy evaluation (call-by-need)
● Concurrency and parallelism
● Partial evaluation
● Rewriting
● Memoization



FP in the Context of Databases

Functional languages are used for querying:
● XQuery
● Relational algebra

Can we also use functional languages to 
optimize transaction processing?



Applications

Lazy non-blocking schema transformations
● Immediate access to results
● Lazy transformations are composable

Persistent functional languages
● Flexible data modelling
● Optimization of transactions



Functional Transaction Processing



Functional Transaction Processing



Persistent Functional Language
users = relation(name, age)



Persistent Functional Language
users = users 
  + (name: “alice”, bday: 26/02/1987)
  + (name: “bob”, bday: 08/09/1985)



Persistent Functional Language
users

name bday
alice 26/02/1987
bob 08/09/1985



Persistent Functional Language
users.map(name, age: years(now - bday))

name age
alice 27
bob 29



Persistent Functional Language
users = users.map(name, btime: bday.toTimestamp)



Lazy Transaction Processing



Lazy Evaluation

Suspend computations 
which results are not 
immediately needed.



Laziness in Mutable Databases

a b c d

95 43 72 56

swap b c

c = a + b + c + d

Thunk

Thunk Thunk

Thunk Thunk Thunk Thunk

a = a * 2



Laziness in Functional Databases

a b c d

95 43 72 56

swap b c

c = a + b + c + d
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Thunk Thunk

Thunk



Lazy Bulk Operations

a b c d
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Thunk_ * 2 Thunk Thunk Thunk



Divide and Conquer Lazy Operations
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Divide and Conquer Lazy Operations
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Divide and Conquer Lazy Operations

a b c d

95 86 72 56

Thunk_ * 2 Thunk



Why Lazy Transactions?

● Provides parallelism
● Allows for lazy bulk operations
● Improved performance*

○ Temporal load balancing
○ Avoiding work
○ Locality of reference
○ Reduced contention footprint

* Jose M. Faleiro, Alexander Thomson. Lazy Evaluation of Transactions in Database Systems. VLDB, 2014.



Implementation



Persistent data structures
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Graph rewriting

Branch

Branch

Leaf Leaf

map f

Branch

Leaf Leaf



Graph rewriting

Branch

Leaf Leaf

Branch

Leaf Leaf

Branch

map f map f



Graph rewriting

Branch

Leaf Leaf Leaf Leaf

Branch

map f Branch

map f map f



Graph rewriting
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Bulk Data
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Bulk Data

Lazy Index



On-disk Storage



Storage orientation

Column oriented storage is good for:
● Projections
● Aggregates
● Single-column updates
Row oriented storage is good for:
● Inserts, deletes and multi-column updates



Architecture
Relation

Slice

A B C

Slice

A B C

Lazy Index Lazy Index



Durability

Idea sketch:
● Journal transaction functions
● Take a snapshot of the index at regular 

intervals
● When taking a snapshot, commit the 

MonetDB state to flush blocks to disk.



Using MonetDB



Using MonetDB for column storage

Idea:
● MonetDB stores columns
● MonetDB performs bulk operations
● We provide laziness

MonetDB

Lazy
Database



Questions

Can MonetDB handle this use case?
● We may create many temporary columns
● What size of columns should we use?
● How would MonetDB cope with OLTP 

workloads in this approach?



Questions

How do we perform joins?
● MonetDB does not know if there are 

operations pending on a node.
● Solution sketch: We request data from 

MonetDB, and perform the join ourselves.
● Is there a better approach?



Questions

Or should we use alternative approaches:
● Implement laziness in MAL?
● Implement laziness inside MonetDB?
● Use a lower level storage system?
● Build our own storage system?





Functional languages for databases

● Integrate programming and databases
○ Optimize transactions
○ Flexible data modelling

● Immutable data structures provide isolation
● Lazy database updates

○ Concurrency control through data dependencies
○ Non-blocking schema transformations



Online Schema Transformations



Basic Schema Changes

Creating, removing and changing:
● Relations
● Columns
● Indices
● Constraints



Complex Schema Changes

Complex transformations:
● Changing the type of primary key
● Changing the cardinality of relationships
● Splitting and merging of tables
● Moving data between tables
● Any combination of basic transformations



Current database systems

PostgreSQL MySQL

Simple
Changes Mixed results Mixed results

Complex
Changes

Correct but 
blocking

Online but 
incorrect



Solution Direction

Lazy schema transformations:
● A transformation is a view on the old schema.
● Transform data on demand when accessed.

How this better meets the requirements:
● Updates are immediately visible.
● Lazy schema changes are composable.


