Lazy Transactional
Operations on Bulk Data

Lesley Wevers
Marieke Huisman Maurice van Keulen

CWI, 23 February 2015

Fﬁ Sammal Databases

& Tools

O O Group

N\ /

Functional Databases

Functional Programming

Functional Programming

Imperative programming
e EXxecute instructions that mutate state
Functional programming

e Evaluate expressions that produce values
o users.map(u => u.name)
o users.filter(u => u.age < 18)
o users.reduce(max, u => u.age)
o users.orderBy(u => u.name)

Pure functional programming

Pure functions: stateless and deterministic

e Lazy evaluation (call-by-need)
Concurrency and parallelism
Partial evaluation

Rewriting

®
®
®
e Memoization

FP in the Context of Databases

Functional languages are used for querying:

e XQuery
e Relational algebra

Can we also use functional languages to
optimize transaction processing?

Applications

Lazy non-blocking schema transformations

e Immediate access to results
e |Lazy transformations are composable

Persistent functional languages

e Flexible data modelling
e Optimization of transactions

Functional Transaction Processing

Functional Transaction Processing

Persistent Functional Language

users = relation(name, age)

Persistent Functional Language

Users = users
+ (name: “alice”, bday: 26/02/1987)
+ (name: “bob”, bday: 08/09/1985)

Persistent Functional Language

users

name bday
alice 26/02/1987
bob 08/09/1985

Persistent Functional Language

users.map(name, age: years(now - bday))

name age
alice 27
bob 29

Persistent Functional Language

users = users.map(name, btime: bday.toTimestamp)

Lazy Transaction Processing

Lazy Evaluation

Unevaluated ‘ thunk

’(thunk thunk)
r

Suspend computations

which results are not
immediately needed. (4 , =)
wel (4, L)
4 ,1:2:+)

W4 ,1:2: 0D

Laziness in Mutable Databases

a b C d
95 43 72 56
f A
a=a*?2 < Thunk
A
swapbc < Thunk Thunk
c=at+b+c+d =« Thunk Thunk Thunk Thunk

Laziness Iin Functional Databases

a=a*2

swapbc

c=a+b+c+d

95

43

72

56

Thunk

Thunk

Thunk

Thunk

Lazy Bulk Operations

95

43

72

56

Thunk

Thunk

Thunk

Thunk

Divide and Conquer Lazy Operations

95 43 72 56

* 9 S R—— Thunk

Divide and Conquer Lazy Operations

95 43 72 56

*2 D E— Thunk Thunk

Divide and Conquer Lazy Operations

95 43 72 56

*2 D — Thunk Thunk Thunk

Divide and Conquer Lazy Operations

95 86 72 56

*2 D E— Thunk Thunk

Why Lazy Transactions?

e Provides parallelism
e Allows for lazy bulk operations

e Improved performance”
Temporal load balancing
Avoiding work

Locality of reference
Reduced contention footprint

O O O O

* Jose M. Faleiro, Alexander Thomson. Lazy Evaluation of Transactions in Database Systems. VLDB, 2014.

Implementation

Persistent data structures

|

Branch

P

Branch Branch

/NN

Leaf Leaf Leaf L eaf

Persistent data structures

Branch Branch
S AN
Branch Branch Branch

FN N ¢

Leaf Leaf Leaf Leaf Leaf

Persistent data structures

}

Branch
/—\ \

Branch Bl’anCh

/ 0\ g

Leaf Leaf Leaf Leaf

Graph rewriting

Branch <— map f
< \
Branch Branch

/NN

Leaf Leaf Leaf L eaf

Graph rewriting

}

Branch

/N

Branch Branch map f map f

/NN

Leaf Leaf Leaf L eaf

Graph rewriting

Branch
—
Branch map f Branch
Leaf Leaf Leaf Leaf map f map f

S \\//

Graph rewriting

Branch
—
Branch map f Branch
Leaf Leaf Leaf mapf Leaf

N _

Bulk Data
!

/ Branch
ranch Branc

B

/

h

N\

Bulk Data

v

Lazy Index

/7 \ T

On-disk Storage

Storage orientation

Column oriented storage is good for:

e Projections
e Aggregates
e Single-column updates

Row oriented storage is good for:
e Inserts, deletes and multi-column updates

Architecture

Lazy Index

Lazy Index

Durability

|dea sketch:

e Journal transaction functions

e Take a snapshot of the index at regular
Intervals

e \When taking a snapshot, commit the
MonetDB state to flush blocks to disk.

Using MonetDB

Using MonetDB for column storage

|dea:
e MonetDB stores columns N
e MonetDB performs bulk operations l

e \We provide laziness

MonetDB

Questions

Can MonetDB handle this use case?

e \We may create many temporary columns
e \What size of columns should we use?

e How would MonetDB cope with OLTP
workloads in this approach?

Questions

How do we perform joins?

e MonetDB does not know if there are
operations pending on a node.

e Solution sketch: We request data from
MonetDB, and perform the join ourselves.

e Is there a better approach?

Questions

Or should we use alternative approaches:

e Implement laziness in MAL?
mplement laziness inside MonetDB?
Use a lower level storage system?
Build our own storage system?

Functional languages for databases

e Integrate programming and databases

o Optimize transactions
o Flexible data modelling

e Immutable data structures provide isolation
e | azy database updates

o Concurrency control through data dependencies
o Non-blocking schema transformations

Online Schema Transformations

Basic Schema Changes

Creating, removing and changing:

e Relations
e Columns
e Indices

e (Constraints

Complex Schema Changes

Complex transformations:

Changing the type of primary key
Changing the cardinality of relationships
Splitting and merging of tables

Moving data between tables

Any combination of basic transformations

Current database systems

PostgreSQL |MySQL
Simple
Changes
Complex Correct but Online but
Changes blocking Incorrect

Solution Direction

Lazy schema transformations:

e A transformation is a view on the old schema.
e [ransform data on demand when accessed.

How this better meets the requirements:

e Updates are immediately visible.
e |azy schema changes are composable.

