
Lazy Transactional
Operations on Bulk Data

Lesley Wevers
Marieke Huisman Maurice van Keulen

CWI, 23 February 2015

Databases
Group

Functional Databases

Functional Programming

Functional Programming
Imperative programming
● Execute instructions that mutate state
Functional programming
● Evaluate expressions that produce values

○ users.map(u => u.name)
○ users.filter(u => u.age < 18)
○ users.reduce(max, u => u.age)
○ users.orderBy(u => u.name)

Pure functional programming

Pure functions: stateless and deterministic
● Lazy evaluation (call-by-need)
● Concurrency and parallelism
● Partial evaluation
● Rewriting
● Memoization

FP in the Context of Databases

Functional languages are used for querying:
● XQuery
● Relational algebra

Can we also use functional languages to
optimize transaction processing?

Applications

Lazy non-blocking schema transformations
● Immediate access to results
● Lazy transformations are composable

Persistent functional languages
● Flexible data modelling
● Optimization of transactions

Functional Transaction Processing

Functional Transaction Processing

Persistent Functional Language
users = relation(name, age)

Persistent Functional Language
users = users
 + (name: “alice”, bday: 26/02/1987)
 + (name: “bob”, bday: 08/09/1985)

Persistent Functional Language
users

name bday
alice 26/02/1987
bob 08/09/1985

Persistent Functional Language
users.map(name, age: years(now - bday))

name age
alice 27
bob 29

Persistent Functional Language
users = users.map(name, btime: bday.toTimestamp)

Lazy Transaction Processing

Lazy Evaluation

Suspend computations
which results are not
immediately needed.

Laziness in Mutable Databases

a b c d

95 43 72 56

swap b c

c = a + b + c + d

Thunk

Thunk Thunk

Thunk Thunk Thunk Thunk

a = a * 2

Laziness in Functional Databases

a b c d

95 43 72 56

swap b c

c = a + b + c + d

a = a * 2 Thunk

Thunk Thunk

Thunk

Lazy Bulk Operations

a b c d

95 43 72 56

Thunk_ * 2 Thunk Thunk Thunk

Divide and Conquer Lazy Operations

a b c d

95 43 72 56

Thunk_ * 2

Divide and Conquer Lazy Operations

a b c d

95 43 72 56

Thunk_ * 2 Thunk

Divide and Conquer Lazy Operations

a b c d

95 43 72 56

Thunk_ * 2 ThunkThunk

Divide and Conquer Lazy Operations

a b c d

95 86 72 56

Thunk_ * 2 Thunk

Why Lazy Transactions?

● Provides parallelism
● Allows for lazy bulk operations
● Improved performance*

○ Temporal load balancing
○ Avoiding work
○ Locality of reference
○ Reduced contention footprint

* Jose M. Faleiro, Alexander Thomson. Lazy Evaluation of Transactions in Database Systems. VLDB, 2014.

Implementation

Persistent data structures

Branch

Branch

Leaf Leaf

Branch

Leaf Leaf

Persistent data structures

Branch

Branch

Leaf Leaf

Branch

Branch

Leaf

Branch

Leaf Leaf

Persistent data structures

Branch

Leaf Leaf

Branch

Branch

LeafLeaf

Graph rewriting

Branch

Branch

Leaf Leaf

map f

Branch

Leaf Leaf

Graph rewriting

Branch

Leaf Leaf

Branch

Leaf Leaf

Branch

map f map f

Graph rewriting

Branch

Leaf Leaf Leaf Leaf

Branch

map f Branch

map f map f

Graph rewriting

Branch

Leaf Leaf Leaf

Branch

map f Branch

map f Leaf

Bulk Data

Branch

Branch Branch

Bulk Data

Lazy Index

On-disk Storage

Storage orientation

Column oriented storage is good for:
● Projections
● Aggregates
● Single-column updates
Row oriented storage is good for:
● Inserts, deletes and multi-column updates

Architecture
Relation

Slice

A B C

Slice

A B C

Lazy Index Lazy Index

Durability

Idea sketch:
● Journal transaction functions
● Take a snapshot of the index at regular

intervals
● When taking a snapshot, commit the

MonetDB state to flush blocks to disk.

Using MonetDB

Using MonetDB for column storage

Idea:
● MonetDB stores columns
● MonetDB performs bulk operations
● We provide laziness

MonetDB

Lazy
Database

Questions

Can MonetDB handle this use case?
● We may create many temporary columns
● What size of columns should we use?
● How would MonetDB cope with OLTP

workloads in this approach?

Questions

How do we perform joins?
● MonetDB does not know if there are

operations pending on a node.
● Solution sketch: We request data from

MonetDB, and perform the join ourselves.
● Is there a better approach?

Questions

Or should we use alternative approaches:
● Implement laziness in MAL?
● Implement laziness inside MonetDB?
● Use a lower level storage system?
● Build our own storage system?

Functional languages for databases

● Integrate programming and databases
○ Optimize transactions
○ Flexible data modelling

● Immutable data structures provide isolation
● Lazy database updates

○ Concurrency control through data dependencies
○ Non-blocking schema transformations

Online Schema Transformations

Basic Schema Changes

Creating, removing and changing:
● Relations
● Columns
● Indices
● Constraints

Complex Schema Changes

Complex transformations:
● Changing the type of primary key
● Changing the cardinality of relationships
● Splitting and merging of tables
● Moving data between tables
● Any combination of basic transformations

Current database systems

PostgreSQL MySQL

Simple
Changes Mixed results Mixed results

Complex
Changes

Correct but
blocking

Online but
incorrect

Solution Direction

Lazy schema transformations:
● A transformation is a view on the old schema.
● Transform data on demand when accessed.

How this better meets the requirements:
● Updates are immediately visible.
● Lazy schema changes are composable.

