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March 4, 2014

Bitcoin bank Flexcoin shuts down after massive
theft

Some S600,000 worth of bitcoins were stolen from
the site

March 5, 2014

Yet another exchange hacked: Poloniex
loses around $50,000 in bitcoin

Firm can't cover losses: "All balances will temporarily be deducted by 12.3%."



On March 4th, 2014, about 12.3% of the BTC on Poloniex was stolen.
How Did It Happen?

The hacker found a vulnerability in the code that takes withdrawals. Here's what happens when you place a
withdrawal:

Input validation.

. Your balance is checked to see if you have enough funds.

If you do, your balance is deducted.

. The withdrawal is inserted into the database.

. The confirmation email is sent.

After you confirm the withdrawal, the withdrawal daemon picks it up and processes the withdrawal.

OUhWN

The hacker discovered that if you place several withdrawals all in practically the same instant, they will get
processed at more or less the same time. This will result in a negative balance, but valid insertions into the
database, which then get picked up by the withdrawal daemon.
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Transactions & Correctness

Databases provide transactions to ensure Correctness guarantees:
correct execution of database operations.

Atomicity
def withdraw (account, amount) :
atomic: Consistency
if (balance[account] < amount) Isolation
abort
balance[account] -= amount Durability
withdrawals += (account, amount)



Weak Isolation

High volume database systems often trade correctness for performance.
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Weak Isolation

High volume database systems often trade correctness for performance.
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Can we make transactions faster without sacrificing correctness?




Transactional Workloads in Database Systems

Variety Footprint Access pattern
. OLTP . Regular Small Read / write
Online transaction processing
OLAP Ad-hoc Large / Everything Read-only

Online analytical processing



Transactional Workloads in Database Systems

OLTP

Online transaction processing

OLAP

Online analytical processing

OLBP?

Online bulk processing

Variety Footprint Access pattern
Regular Small Read / write
Ad-hoc Large / Everything Read-only
Ad-hoc Large / Everything Read / write



Concurrency Control

Two-phase locking
® Lock data elements while executing the transaction.
® Do not release locks until the transaction has finished.

Optimistic concurrency control
® Check validity of a transaction after executing.
® Abort and re-execute if inconsistent.

Multi-version concurrency control
® Perform read-only transactions on a snapshot.



Multi-Core Scalability
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The YCSB benchmark under high contention.

Xiangyao Yu et al. Staring Into The Abyss: An Evaluation Of Concurrency Control With One Thousand Cores. VLDB 2014.



Runtime Breakdown
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Contention

Sources of Contention in OLTP transactions
® Counters

Summary data

Popular items

Newest / oldest items

Correlated access

Zipfian access skew



Bulk Updates

Bulk updates content with most or all concurrent transactions
® Bulk operations are often required in schema transformations

WikiMedia schema revisions:
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Curino et al. http://yellowstone.cs.ucla.edu/schema-evolution/index.php/Schema_Evolution_Benchmark



http://yellowstone.cs.ucla.edu/schema-evolution/index.php/Schema_Evolution_Benchmark

Bulk Updates
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Bulk updates block all concurrent transactions, or are executed incorrectly.

L. Wevers et al. A Benchmark for Online Non-Blocking Schema Transformations. DATA 2015.
L. Wevers et al. Analysis of the Blocking Behaviour of Schema Transformations in Relational Database Systems. ADBIS 2015.



Contributions

Existing concurrency control mechanisms:
® Cannot execute contended workloads concurrently
® Block concurrent transactions during bulk operations

We have developed a concurrency control mechanism that can:
® Significantly improve parallelism in contended workloads
® Execute bulk operations without blocking



Lazy Transactions




Lazy Transactions

Main Ideas
® Re-order operations within a transaction based on demand from readers
® Use results from partially executed transactions

Mechanism: move responsibility of evaluation from writers to readers
® Transactions commit before executing their operations
® Readers can prioritize evaluation of those operations that they need



Mechanism

Update functions
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Split a transaction into update functions on variables.




Transaction 1

Mechanism

Transaction 2

\

1.

8

TODO

Transaction 3




Mechanism

Transaction 1 Transaction 2 Transaction 3

V1__8 TODO V




Mechanism

Transaction 1 Transaction 2 Transaction 3

V1__8 TODO V

TODO | TODO TODO
ro0o | | 700 | [7000 [7086 | 7000 || 000 | 000 | 7000
V1 V2 V3 V4 V5 V6 V7 V8




Transaction 1

TODO

Mechanism

Transaction 2

v TODO

1.8

Transaction 3

TODO

TODO

TODO

TODO




Transaction 1

Mechanism

Transaction 2 Transaction 3

00 om0,
Y,
- read 4 -
- TODO TODO TODO
rop0 || To00 | 7000 7086 Top0  TODO | TODO | [TOBO |
v, v, v, v, Vg Vg v, Vg




Mechanism
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Encoding Transactions




Transaction Execution Phases

1. Preparation Phase
o  Prepare update functions
o  Optimistic reads on a snapshot

2. Commit Phase

o Queue update functions
o Blocking reads on the current state

3. Lazy Phase

o Work performed inside update functions
o Lazy reads on a snapshot

4. Result Phase

o  Compute observable results from a snapshot



Lazy Reads

commit: commit:

update(y, get(x)) s <- snapshot
update(y, v => s.get(x))



Optimistic Reads

commit: prepare:
update(get(y), a) X <- get(y)
commit:

s <- snapshot
update(x, v =>
if(x == s.get(y))
a
else
Y



Reading transaction results

commit: commit:
update(x, V) update(x, V)
return get(x) + get(y) + get(z) s <- snapshot
result:

return s.get(x) + s.get(y) + s.get(z)



Read-only

prepare:
s <- snapshot
return s.get(x) + s.get(y) + s.get(z)
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How do we deal with errors?




Aborts

If a transaction aborts: all update functions must return the original value
If a transaction commits: all update functions must not fail

Check for errors before committing

commit:
s <- snapshot
lazy check = s.get(x) > 10
update(x, v => if(check) f(v) else v)
update(y, v => if(check) g(v) else v)
update(z, v => if(check) h(v) else v)



Lazy Indexes & Bulk Operations




Lazy Indexes

Indexes are the basic building block of database management systems
® Access by primary key

Secondary indexes

Goal: develop an index structure for lazy transactions

Single-key and bulk operations

Sequential access by writers to queue lazy operations
Concurrent access by readers, which evaluate lazy operations
Snapshots, for lazy reads



Immutable Data Structures

We use immutable data structures to provide snapshots

® Instances cannot be mutated: any instance is a snapshot
® Updates create a new version of the data structure

® Unmodified parts are shared (copy-on-write)

"




How can we atomically write
many update functions
without blocking?
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-/ branch
Ve TODO /////
branch -
/ \ TODO TODO

branch branch branch branch

- ;

V,s| TODO

read




Transaction 1 branch Transaction 2

Vs \ Vi.s | TODO
v, branch
Ve TODO /
branch
branch
///// \\\\\ TODO
branch branch branch
\ / TODO | | TODO
v, v, A v, Vg Ve v, Vg

read




Transaction 1 branch Transaction 2

V, \ V, ¢ | TODO
v, branch
v, TODO /
branch
branch
/ \ TODO
branch branch branch
\ / TODO
\Z v, A v, A Vg v, Vg

read




Trie[K,V]

Empty

Leaf(k: K, v:V)

Branch(children : Array[Trie[K,V]])

Benefits

Static balancing scheme
Wide branches

Ordered

Snapshots: copy on write

Tries




Lazy Tries

Trie[K,V]
Empty
Leaf(k: K,v:Lazy[V])
Branch(
children : Array[ Lazy[ Trie[K,V]1])




Single key updates
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Bulk range updates
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Bulk random-access updates
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Scheduling Lazy Operations




Immediate Evaluation

commit:
update(x, v=>..))
update(y, v=>...)
update(z, v=>..))
s <- snapshot

result:
s.get(x)

s.get(y)
s.get(z)



Scheduling Opportunities

Delay evaluation of operations that are not needed immediately
Better temporal locality

Lower write latency

Can avoid work

— Higher read latency

— Higher memory consumption

+ + +

Execute lazy operations in batches
+ Better spatial locality
+ Amortization of scheduling overhead
— Higher read latency



Experimental Results




Experimental Setup

We have implemented a lazy trie in Scala (JVM)

How does our system handle:

® Highly contended workloads

® Bulk operations: effect on concurrent transactions
® Realistic workloads: TPC-C

We compare against ScalaSTM
® Software transactional memory for Scala
® Transactional maps
® Optimistic concurrency control



Workload: i7-3770 @ 3.4GHz
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90% reads / 10% updates 10% reads / 90% updates
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1 read per write 10 reads per write
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Effect of bulk updates on concurrent OLTP workload

Throughput relative to baseline
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TPC-C: 1 warehouse

TPC-C: 10 warehouses
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Conclusions




Conclusions

Lazy transactions execute contended transactions concurrently
® Non-blocking bulk updates
® Nearly ideal scaling on single-processor multi-core systems

Current concurrency control mechanisms cannot do this
® This is surprising, considering there has been 40 years of DB research

Requires core changes to database architecture
® Transactions are be submitted as programs



Future Work

Scalability on NUMA systems: solving root contention
Lazy relational schema transformations
Lazy transactions for on-disk databases
Language support for lazy transactions



Further Information

Read the paper
Lesley Wevers, Marieke Huisman and Maurice van Keulen. Lazy Evaluation
for Concurrent OLTP and Bulk Transactions.

Implementation and benchmarks
https://github.com/utwente-fmt/lazy-transactions-IDEAS16



