Lazy Evaluation for Concurrent
OLTP and Bulk Transactions

Lesley Wevers
Marieke Huisman Maurice van Keulen

March 4, 2014

Bitcoin bank Flexcoin shuts down after massive
theft

Some S600,000 worth of bitcoins were stolen from
the site

March 5, 2014

Yet another exchange hacked: Poloniex
loses around $50,000 in bitcoin

Firm can't cover losses: "All balances will temporarily be deducted by 12.3%."

On March 4th, 2014, about 12.3% of the BTC on Poloniex was stolen.
How Did It Happen?

The hacker found a vulnerability in the code that takes withdrawals. Here's what happens when you place a
withdrawal:

Input validation.

. Your balance is checked to see if you have enough funds.

If you do, your balance is deducted.

. The withdrawal is inserted into the database.

. The confirmation email is sent.

After you confirm the withdrawal, the withdrawal daemon picks it up and processes the withdrawal.

OUhWN

The hacker discovered that if you place several withdrawals all in practically the same instant, they will get
processed at more or less the same time. This will result in a negative balance, but valid insertions into the
database, which then get picked up by the withdrawal daemon.

balance

Alice

10

What happened?

withdraw 10

to

amount

balance

Alice

10

What happened?

withdraw 10

>=107?

i

to

amount

balance

Alice

-50

What happened?

withdraw 10
deduct 10

it

to

amount

balance

Alice

What happened?

withdraw 10

T

to amount
Alice 10
Alice 10
Alice 10
Alice 10
Alice 10
Alice 10

Transactions & Correctness

Databases provide transactions to ensure Correctness guarantees:
correct execution of database operations.

Atomicity
def withdraw (account, amount) :
atomic: Consistency
if (balance[account] < amount) Isolation
abort
balance[account] -= amount Durability
withdrawals += (account, amount)

Weak Isolation

High volume database systems often trade correctness for performance.

A
High +
=4
3
E Medium +
=
=2
E
Lo
1 Il 1 1 »
T T T T Ll
Read Read Repeatable Serializable
uncommitted committed Read

Securily

Weak Isolation

High volume database systems often trade correctness for performance.

r

High +

Mediym -

Performance

Ly =

»

i i] 1
T T T T L
Read Read Repeatable Serializable
uncommitted commitbed Read
Securily

Can we make transactions faster without sacrificing correctness?

Transactional Workloads in Database Systems

Variety Footprint Access pattern
. OLTP . Regular Small Read / write
Online transaction processing
OLAP Ad-hoc Large / Everything Read-only

Online analytical processing

Transactional Workloads in Database Systems

OLTP

Online transaction processing

OLAP

Online analytical processing

OLBP?

Online bulk processing

Variety Footprint Access pattern
Regular Small Read / write
Ad-hoc Large / Everything Read-only
Ad-hoc Large / Everything Read / write

Concurrency Control

Two-phase locking
® Lock data elements while executing the transaction.
® Do not release locks until the transaction has finished.

Optimistic concurrency control
® Check validity of a transaction after executing.
® Abort and re-execute if inconsistent.

Multi-version concurrency control
® Perform read-only transactions on a snapshot.

Multi-Core Scalability

— 0.25 T o—e DL DETECT a—a TIMESTAMP

2 o0 NO WAIT o o MVCC

X 020F © s o.|B@ WAIT_DIE =+ OCC

C

S X

= 0.15 .

Z _.

5 0.10 o]

£ -~

S R ottty - - - - -

3 0.05 °- . !

= 0.00 | 1 | f . \%
0 200 400 600 800 1000

Number of Cores

The YCSB benchmark under high contention.

Xiangyao Yu et al. Staring Into The Abyss: An Evaluation Of Concurrency Control With One Thousand Cores. VLDB 2014.

Runtime Breakdown

= X 18]
T5x8g ¢
UATn

-:__-:

Contention

Sources of Contention in OLTP transactions
® Counters

Summary data

Popular items

Newest / oldest items

Correlated access

Zipfian access skew

Bulk Updates

Bulk updates content with most or all concurrent transactions
® Bulk operations are often required in schema transformations

WikiMedia schema revisions:

10
g ® 90% require a write lock.

-Eu
"
s

i: r il |IIN I.||I ||.|.‘|||| “ il

11 18 21 IHIIHEL

&

® Largesttook 22 hoursto
| | complete for wikipedia.

Curino et al. http://yellowstone.cs.ucla.edu/schema-evolution/index.php/Schema_Evolution_Benchmark

http://yellowstone.cs.ucla.edu/schema-evolution/index.php/Schema_Evolution_Benchmark

Bulk Updates

postgresql mysql

oo My '

2:36 0:51
Bulk updates block all concurrent transactions, or are executed incorrectly.

L. Wevers et al. A Benchmark for Online Non-Blocking Schema Transformations. DATA 2015.
L. Wevers et al. Analysis of the Blocking Behaviour of Schema Transformations in Relational Database Systems. ADBIS 2015.

Contributions

Existing concurrency control mechanisms:
® Cannot execute contended workloads concurrently
® Block concurrent transactions during bulk operations

We have developed a concurrency control mechanism that can:
® Significantly improve parallelism in contended workloads
® Execute bulk operations without blocking

Lazy Transactions

Lazy Transactions

Main Ideas
® Re-order operations within a transaction based on demand from readers
® Use results from partially executed transactions

Mechanism: move responsibility of evaluation from writers to readers
® Transactions commit before executing their operations
® Readers can prioritize evaluation of those operations that they need

Mechanism

Update functions

Vs

12

14

Split a transaction into update functions on variables.

Transaction 1

Mechanism

Transaction 2

\

1.

8

TODO

Transaction 3

Mechanism

Transaction 1 Transaction 2 Transaction 3

V1__8 TODO V

Mechanism

Transaction 1 Transaction 2 Transaction 3

V1__8 TODO V

TODO | TODO TODO
ro0o | | 700 | [7000 [7086 | 7000 || 000 | 000 | 7000
V1 V2 V3 V4 V5 V6 V7 V8

Transaction 1

TODO

Mechanism

Transaction 2

v TODO

1.8

Transaction 3

TODO

TODO

TODO

TODO

Transaction 1

Mechanism

Transaction 2 Transaction 3

00 om0,
Y,
- read 4 -
- TODO TODO TODO
rop0 || To00 | 7000 7086 Top0 TODO | TODO | [TOBO |
v, v, v, v, Vg Vg v, Vg

Mechanism

Transaction 1 Transaction 2 Transaction 3

V1__8 TODO V

#6881 | Tono rop0
read
rop0 || To00 [7080| . Topo Topo | Topo| [Topo

Encoding Transactions

Transaction Execution Phases

1. Preparation Phase
o Prepare update functions
o Optimistic reads on a snapshot

2. Commit Phase

o Queue update functions
o Blocking reads on the current state

3. Lazy Phase

o Work performed inside update functions
o Lazy reads on a snapshot

4. Result Phase

o Compute observable results from a snapshot

Lazy Reads

commit: commit:

update(y, get(x)) s <- snapshot
update(y, v => s.get(x))

Optimistic Reads

commit: prepare:
update(get(y), a) X <- get(y)
commit:

s <- snapshot
update(x, v =>
if(x == s.get(y))
a
else
Y

Reading transaction results

commit: commit:
update(x, V) update(x, V)
return get(x) + get(y) + get(z) s <- snapshot
result:

return s.get(x) + s.get(y) + s.get(z)

Read-only

prepare:
s <- snapshot
return s.get(x) + s.get(y) + s.get(z)

read

read

read

How do we deal with errors?

Aborts

If a transaction aborts: all update functions must return the original value
If a transaction commits: all update functions must not fail

Check for errors before committing

commit:
s <- snapshot
lazy check = s.get(x) > 10
update(x, v => if(check) f(v) else v)
update(y, v => if(check) g(v) else v)
update(z, v => if(check) h(v) else v)

Lazy Indexes & Bulk Operations

Lazy Indexes

Indexes are the basic building block of database management systems
® Access by primary key

Secondary indexes

Goal: develop an index structure for lazy transactions

Single-key and bulk operations

Sequential access by writers to queue lazy operations
Concurrent access by readers, which evaluate lazy operations
Snapshots, for lazy reads

Immutable Data Structures

We use immutable data structures to provide snapshots

® Instances cannot be mutated: any instance is a snapshot
® Updates create a new version of the data structure

® Unmodified parts are shared (copy-on-write)

"

How can we atomically write
many update functions
without blocking?

Transaction 1 Transaction 2

Vs Vis| TODO
branch
Vy
Vs
branch
branch branch branch branch
\Z v, A v, A Vg v, Vg

read

Transaction 1 Transaction 2
TODO

Vs Vig | TODO
branch

Va4

V5 \

branch
branch branch branch branch

o i i e

read

Transaction 1

TODO

branch

N

branch

branch

branch

Transaction 2

TODO

branch

RN

branch

TODO

branch

|

\W

.

read

Transaction 1 branch Transaction 2

-/ branch
Ve TODO /////
branch -
/ \ TODO TODO

branch branch branch branch

- ;

V,s| TODO

read

Transaction 1 branch Transaction 2

Vs \ Vi.s | TODO
v, branch
Ve TODO /
branch
branch
///// \\\\\ TODO
branch branch branch
\ / TODO | | TODO
v, v, A v, Vg Ve v, Vg

read

Transaction 1 branch Transaction 2

V, \ V, ¢ | TODO
v, branch
v, TODO /
branch
branch
/ \ TODO
branch branch branch
\ / TODO
\Z v, A v, A Vg v, Vg

read

Trie[K,V]

Empty

Leaf(k: K, v:V)

Branch(children : Array[Trie[K,V]])

Benefits

Static balancing scheme
Wide branches

Ordered

Snapshots: copy on write

Tries

Lazy Tries

Trie[K,V]
Empty
Leaf(k: K,v:Lazy[V])
Branch(
children : Array[Lazy[Trie[K,V]1])

Single key updates

*_> ‘,
ia A A=

Bulk range updates

*

—>

-

Bulk random-access updates

10 | 11 +

Vv

Option[(K,V)] => ...

Scheduling Lazy Operations

Immediate Evaluation

commit:
update(x, v=>..))
update(y, v=>...)
update(z, v=>..))
s <- snapshot

result:
s.get(x)

s.get(y)
s.get(z)

Scheduling Opportunities

Delay evaluation of operations that are not needed immediately
Better temporal locality

Lower write latency

Can avoid work

— Higher read latency

— Higher memory consumption

+ + +

Execute lazy operations in batches
+ Better spatial locality
+ Amortization of scheduling overhead
— Higher read latency

Experimental Results

Experimental Setup

We have implemented a lazy trie in Scala (JVM)

How does our system handle:

® Highly contended workloads

® Bulk operations: effect on concurrent transactions
® Realistic workloads: TPC-C

We compare against ScalaSTM
® Software transactional memory for Scala
® Transactional maps
® Optimistic concurrency control

Workload: i7-3770 @ 3.4GHz

e update 2 hot records 4 cores / 8 threads
e update 8 normal records 1600K
I

- 800K
-1 400K
— W = @ | 200K
- 100K
-1 50K

| | | | | |
40961024 256 64 16 4 1 2l

Number of hot records

—e— Lazy par. e~ Lazyseq. -—#— ScalaSTM par. —=— ScalaSTM seq.

Transactions per second

90% reads / 10% updates 10% reads / 90% updates

T T T T T T T 24M T T T T T T T 24M
- 20M - —{20M "g
2 :
g - 16M | d16M &
. 2
£ -~ 12M - a1 12M
S g
s - 8M - =
& 5
2,
- — 4M - @]
0
T T I T T T 1000M \ T I T \ 1000M
7‘7__‘__‘_ A A h—h—h A A A A
@ B i 300M | 300M T
; :
g - 100M | 100M %
4 5
:T_g = 30M B 30M %
£ s
Q - 10M - 10M el
= =
o =
2 - 43M b sM 2
¥ o
L | ! | | | ! | | L IM [1 | | ! | \ | ! | L] IM
1 4 16 64 93 9l0 912 9ld 916 918 1 4 16 64 98 9l0 912 9li 916 918
Operations per transaction Operations per transaction

—e— Lazy -+ Lazy coarse-grained —— Lazy delayed —#— ScalaSTM

1 read per write 10 reads per write

T T T T T 24M T T T T T T 24M
i Ja2oM | JaM g
=)
o
. - 116M |- 16M &
ad ;
v 2

o - 12M | 12M
> =
8 2
4 n 8M - 8M g
a,
B 4M - 4M o

0 0

24M 24M
" - - 20M - -120M g
E g
b - 416M | g a2t - 16M 3
= '-\‘ -
2 a
) B - 12M B - 12M 0
A \ =]
g 8
g= i q8M - I8M B
S :
B 4 AM = — 4M o

! ! \ | | | | 0 ! ! ! ! | | | \
1 4 16 64 9% 910 912 914 916 918 1 4 16 64 98 910 912 9ld 916 918
Writes per transaction Writes per transaction

—o— Lazy —= Lazy coarse-grained —<— Lazy delayed —®— ScalaSTM

Effect of bulk updates on concurrent OLTP workload

Throughput relative to baseline

100% [*

75%

50%

25%

\ | ! !
O%—l 0 1 2 3 4

Read-only Workload

Minutes since start of the bulk update

No reads
—— 4 reads —

Update Workload

100% [TV S AR AT

5% [

50% |-

I

25%

0%

-1

1 read
8 reads

0 1 2 3 4 5 6
Minutes since start of the bulk update

—— 2 reads
—— 16 reads

TPC-C: 1 warehouse

TPC-C: 10 warehouses

400K
200K
100K

50K

25K

00K
400K
200K
100K

25K

4x Opteron 6376 @ 2.3GHz
64 cores / 64 threads

i7-3770 @ 3.4GHz
4 cores / 8 threads

)

Transactions per second

L e N
| | | | | | | | | | | | | | | | | |
1 2 4 8 16 32 64 128256 1 2 4 8 16 32 64 128256
I | I I | I I | I | I |
| | | | | | | | | | | | | | | | | |
1 2 4 8 16 32 64 128256 1 2 4 8 16 32 64 128256
Threads Threads
—— Lazy Transactions

—a— OCC (ScalaSTM)

400K

200K

100K

50K

25K

300K
400K
200K
100K
50K
25K

Transactions per second

4x Opteron 6376 @ 2.3GHz iT-3770 @ 3.4GHz

64 cores / 64 threads 4 cores / 8 threads
T T T T T T T T T T T T T T T T T =
400K + - 400K £
o
5 k4
= 200K - L. 200K y
o &
S 100K - - 10K
@ +
Z 50K - - 50K g
=
g
25[{ L | .I | B 1 I. 1 | I. | | | |] 25K #
1 18 1 2 4 8 16 32 64128256
16{)0K B T T T T T T T T T T T T T T T T T T . E
| 1600K %
o ADOK |- &
g 200K |- MOk @
100K 5
e 400K 3
& 50K |- :
| 200K &
12.5K |- =
625K — 1 I 1 Ay ¢ | B | I | | 1 1 1 1 1 1 1 1 1 ﬁ
1 2 4 8 163264128256 1 2 4 8 16 32 64 128256
25.6M T B B | [T R — T T 71T T 7 23.6M o
12.8M | - : {128M £
8 6amr I o - 6.4M f
£ saM| : {32m 2
T 1.6M| n Jiem 2
S S00K - B 800K £
400K | -~ 4K B
[_|
1 1 1] 1] 1] 1 1 1 1 | 1] 1] 1
20K 5 16 32 64128256 1 2 4 8 16 32 64 128256 20K

Threads Threads
—e— Lazy Transactions —s— OCC (ScalaSTM)

Conclusions

Conclusions

Lazy transactions execute contended transactions concurrently
® Non-blocking bulk updates
® Nearly ideal scaling on single-processor multi-core systems

Current concurrency control mechanisms cannot do this
® This is surprising, considering there has been 40 years of DB research

Requires core changes to database architecture
® Transactions are be submitted as programs

Future Work

Scalability on NUMA systems: solving root contention
Lazy relational schema transformations
Lazy transactions for on-disk databases
Language support for lazy transactions

Further Information

Read the paper
Lesley Wevers, Marieke Huisman and Maurice van Keulen. Lazy Evaluation
for Concurrent OLTP and Bulk Transactions.

Implementation and benchmarks
https://github.com/utwente-fmt/lazy-transactions-IDEAS16

