
Lazy Evaluation for Concurrent
OLTP and Bulk Transactions

Lesley Wevers
Marieke Huisman Maurice van Keulen

March 5, 2014

March 4, 2014

What happened?

balance

... ...

Alice 10

... ...

Request 1
to amount

Request 2

Request 3

Request 4

Request 5

Request 6

withdraw 10

What happened?

balance

... ...

Alice 10

... ...

to amountwithdraw 10

>= 10 ? Request 1

Request 2

Request 3

Request 4

Request 5

Request 6

What happened?

balance

... ...

Alice -50

... ...

to amountwithdraw 10

deduct 10 Request 1

Request 2

Request 3

Request 4

Request 5

Request 6

What happened?

balance

... ...

Alice -50

... ...

to amount

Alice 10

Alice 10

Alice 10

Alice 10

Alice 10

Alice 10

withdraw 10

Request 1

Request 2

Request 3

Request 4

Request 5

Request 6

Transactions & Correctness

Databases provide transactions to ensure
correct execution of database operations.

def withdraw(account, amount):
atomic:

if(balance[account] < amount)
abort

balance[account] -= amount
withdrawals += (account, amount)

Correctness guarantees:

Atomicity
Consistency

Isolation
Durability

Weak Isolation

High volume database systems often trade correctness for performance.

Weak Isolation

High volume database systems often trade correctness for performance.

Can we make transactions faster without sacrificing correctness?

Transactional Workloads in Database Systems

Variety Footprint Access pattern

OLTP
Online transaction processing Regular Small Read / write

OLAP
Online analytical processing Ad-hoc Large / Everything Read-only

Transactional Workloads in Database Systems

Variety Footprint Access pattern

OLTP
Online transaction processing Regular Small Read / write

OLAP
Online analytical processing Ad-hoc Large / Everything Read-only

OLBP?
Online bulk processing Ad-hoc Large / Everything Read / write

Concurrency Control

Two-phase locking
● Lock data elements while executing the transaction.
● Do not release locks until the transaction has finished.

Optimistic concurrency control
● Check validity of a transaction after executing.
● Abort and re-execute if inconsistent.

Multi-version concurrency control
● Perform read-only transactions on a snapshot.

Multi-Core Scalability

The YCSB benchmark under high contention.

Xiangyao Yu et al. Staring Into The Abyss: An Evaluation Of Concurrency Control With One Thousand Cores. VLDB 2014.

Runtime Breakdown

Xiangyao Yu et al. Staring Into The Abyss: An Evaluation Of Concurrency Control With One Thousand Cores. VLDB 2014.

Contention

Sources of Contention in OLTP transactions
● Counters
● Summary data
● Popular items
● Newest / oldest items
● Correlated access
● Zipfian access skew

Bulk Updates

Bulk updates content with most or all concurrent transactions
● Bulk operations are often required in schema transformations

WikiMedia schema revisions:

Curino et al. http://yellowstone.cs.ucla.edu/schema-evolution/index.php/Schema_Evolution_Benchmark

● 90% require a write lock.

● Largest took 22 hours to
complete for wikipedia.

http://yellowstone.cs.ucla.edu/schema-evolution/index.php/Schema_Evolution_Benchmark

Bulk Updates

Bulk updates block all concurrent transactions, or are executed incorrectly.

L. Wevers et al. A Benchmark for Online Non-Blocking Schema Transformations. DATA 2015.
L. Wevers et al. Analysis of the Blocking Behaviour of Schema Transformations in Relational Database Systems. ADBIS 2015.

Contributions

Existing concurrency control mechanisms:
● Cannot execute contended workloads concurrently
● Block concurrent transactions during bulk operations

We have developed a concurrency control mechanism that can:
● Significantly improve parallelism in contended workloads
● Execute bulk operations without blocking

Lazy Transactions

Lazy Transactions

Main Ideas
● Re-order operations within a transaction based on demand from readers
● Use results from partially executed transactions

Mechanism: move responsibility of evaluation from writers to readers
● Transactions commit before executing their operations
● Readers can prioritize evaluation of those operations that they need

Mechanism

TODO

Transaction
Program

TODO

TODO

v3

v8

v12

TODOv14

Split a transaction into update functions on variables.

Update functions

Mechanism

Transaction 1

TODOv3

TODOv4

TODOv8

v1 v2 v3 v4 v5 v6 v7 v8

Transaction 2

TODOv1..8

Transaction 3

TODOv2

TODOv4

Mechanism

Transaction 1

TODOv3

TODOv4

TODOv8

v1 v2 v3 v4 v5 v6 v7 v8

Transaction 2

TODOv1..8

Transaction 3

TODOv2

TODOv4

TODO TODO TODO

Mechanism

Transaction 1

TODOv3

TODOv4

TODOv8

v1 v2 v3 v4 v5 v6 v7 v8

Transaction 2

TODOv1..8

Transaction 3

TODOv2

TODOv4

TODO TODO TODOTODO TODO

TODO TODO

TODO TODO TODO

TODO

Mechanism

Transaction 1

TODOv3

TODOv4

TODOv8

v1 v2 v3 v4 v5 v6 v7 v8

Transaction 2

TODOv1..8

Transaction 3

TODOv2

TODOv4

TODO TODO TODOTODO TODO

TODO TODO

TODO TODO TODO

TODOTODO

TODO

Mechanism

Transaction 1

TODOv3

TODOv4

TODOv8

v1 v2 v3 v4 v5 v6 v7 v8

Transaction 2

TODOv1..8

Transaction 3

TODOv2

TODOv4

TODO TODO TODOTODO TODO

TODO TODO

TODO TODO TODO

TODOTODO

TODO

read

Mechanism

Transaction 1

TODOv3

TODOv4

TODOv8

v1 v2 v3 v4 v5 v6 v7 v8

Transaction 2

TODOv1..8

Transaction 3

TODOv2

TODOv4

TODO TODOTODO TODO

TODO

TODO TODO TODO

TODOTODO
read

Encoding Transactions

Transaction Execution Phases

1. Preparation Phase
○ Prepare update functions
○ Optimistic reads on a snapshot

2. Commit Phase

○ Queue update functions
○ Blocking reads on the current state

3. Lazy Phase
○ Work performed inside update functions
○ Lazy reads on a snapshot

4. Result Phase
○ Compute observable results from a snapshot

Lazy Reads

commit:
update(y, get(x))

commit:
s <- snapshot
update(y, v => s.get(x))

Optimistic Reads

commit:
update(get(y), a)

prepare:
x <- get(y)

commit:
s <- snapshot
update(x, v =>

if(x == s.get(y))
a

else
v

)

Reading transaction results

commit:
update(x, v)
return get(x) + get(y) + get(z)

commit:
update(x, v)
s <- snapshot

result:
return s.get(x) + s.get(y) + s.get(z)

Read-only

prepare:
s <- snapshot
return s.get(x) + s.get(y) + s.get(z)

v1 v2 v3 v4 v5 v6 v7 v8

TODO TODOTODO

read

v1 v2 v3 v4 v5 v6 v7 v8

TODO TODO
read

v1 v2 v3 v4 v5 v6 v7 v8

TODO TODO

read

v1 v2 v3 v4 v5 v6 v7 v8

TODO TODO

read

v1 v2 v3 v4 v5 v6 v7 v8

TODO TODO

read

How do we deal with errors?

Aborts

If a transaction aborts: all update functions must return the original value
If a transaction commits: all update functions must not fail

Check for errors before committing

commit:
s <- snapshot
lazy check = s.get(x) > 10
update(x, v => if(check) f(v) else v)
update(y, v => if(check) g(v) else v)
update(z, v => if(check) h(v) else v)

Lazy Indexes & Bulk Operations

Lazy Indexes

Indexes are the basic building block of database management systems
● Access by primary key
● Secondary indexes

Goal: develop an index structure for lazy transactions
● Single-key and bulk operations
● Sequential access by writers to queue lazy operations
● Concurrent access by readers, which evaluate lazy operations
● Snapshots, for lazy reads

Immutable Data Structures

We use immutable data structures to provide snapshots
● Instances cannot be mutated: any instance is a snapshot
● Updates create a new version of the data structure
● Unmodified parts are shared (copy-on-write)

How can we atomically write
many update functions
without blocking?

v1 v2 v3 v4 v5 v6 v7 v8

branch branch branch branch

branch branch

branch

read

Transaction 1

TODOv3

TODOv4

TODOv5

Transaction 2

TODOv1..8

TODO

v1 v2 v3 v4 v5 v6 v7 v8

branch branch branch branch

branch branch

branch

TODO

read

Transaction 1

TODOv3

TODOv4

TODOv5

Transaction 2

TODOv1..8

TODO

v1 v2 v3 v4 v5 v6 v7 v8

branch branch branch branch

branch branch

branch

TODO

TODO

TODO

read

Transaction 1

TODOv3

TODOv4

TODOv5

Transaction 2

TODOv1..8

TODO

v1 v2 v3 v4 v5 v6 v7 v8

branch branch branch branch

branch

branch

branch

TODO

TODO

TODO

TODO

read

Transaction 1

TODOv3

TODOv4

TODOv5

Transaction 2

TODOv1..8

TODO

v1 v2 v3 v4 v5 v6 v7 v8

branch branch

branch

branch

branch

branch

branch

TODO

TODO

TODO

TODO TODO

read

Transaction 1

TODOv3

TODOv4

TODOv5

Transaction 2

TODOv1..8

TODO

v1 v2 v3 v4 v5 v6 v7 v8

branch branch

branch

branch

branch

branch

branch

TODO

TODO

TODO

read

Transaction 1

TODOv3

TODOv4

TODOv5

Transaction 2

TODOv1..8

Tries

Trie[K,V]
 Empty
 Leaf(k : K, v : V)
 Branch(children : Array[Trie[K,V]])

Benefits
● Static balancing scheme
● Wide branches
● Ordered
● Snapshots: copy on write

00 01 10 11

00 01 10 11 00 01 10 11

0110

k

23

v

0000

k

65

v

0011

k

45

v

Lazy Tries

Trie[K,V]
 Empty
 Leaf(k : K, v : Lazy[V])
 Branch(
 children : Array[Lazy[Trie[K,V]]])

00 01 10 11

00 01 10 11 00 01 10 11

0110

k

23

v

0000

k

65

v

0011

k

45

v

map(() => ...)

update(0110, () => ….)

Single key updates

00 01 10 11

update(..01.. , () => ...)
00 01 10 11

update(..01.. , () => ...)

Bulk range updates

00 01 10 11

map(() => ...)
00 01 10 11

map(() => ...) map(() => ...)

map(() => ...)

Bulk random-access updates

00 01 10 11

merge

ba

00 01 10 11

x ..10..

k

Option[(K,V)] => ...

v

00 01 10 11

xa ..10..

k

...

v

merge

b

map(None)

Scheduling Lazy Operations

Immediate Evaluation

commit:
update(x, v => ...)
update(y, v => ...)
update(z, v => ...)
s <- snapshot

result:
s.get(x)
s.get(y)
s.get(z)

Scheduling Opportunities

Delay evaluation of operations that are not needed immediately
+ Better temporal locality
+ Lower write latency
+ Can avoid work
− Higher read latency
− Higher memory consumption

Execute lazy operations in batches
+ Better spatial locality
+ Amortization of scheduling overhead
− Higher read latency

Experimental Results

Experimental Setup

We have implemented a lazy trie in Scala (JVM)

How does our system handle:
● Highly contended workloads
● Bulk operations: effect on concurrent transactions
● Realistic workloads: TPC-C

We compare against ScalaSTM
● Software transactional memory for Scala
● Transactional maps
● Optimistic concurrency control

Workload:
● update 2 hot records
● update 8 normal records

Effect of bulk updates on concurrent OLTP workload

Conclusions

Conclusions

Lazy transactions execute contended transactions concurrently
● Non-blocking bulk updates
● Nearly ideal scaling on single-processor multi-core systems

Current concurrency control mechanisms cannot do this
● This is surprising, considering there has been 40 years of DB research

Requires core changes to database architecture
● Transactions are be submitted as programs

Future Work

● Scalability on NUMA systems: solving root contention
● Lazy relational schema transformations
● Lazy transactions for on-disk databases
● Language support for lazy transactions

Further Information

Read the paper
Lesley Wevers, Marieke Huisman and Maurice van Keulen. Lazy Evaluation
for Concurrent OLTP and Bulk Transactions.

Implementation and benchmarks
https://github.com/utwente-fmt/lazy-transactions-IDEAS16

