
Towards Online and Transactional Relational Schema
Transformations

Lesley Wevers, Matthijs Hofstra, Menno Tammens, Marieke Huisman, Maurice van Keulen

University of Twente

ABSTRACT
In this paper, we want to draw the attention of the database
community to the problem of online schema changes: chang-
ing the schema of a database without blocking concurrent
transactions. We have identified important classes of re-
lational schema transformations that we want to perform
online, and we have identified general requirements for the
mechanisms that execute these transformations. Using these
requirements, we have developed an experiment based on the
standard TPC-C benchmark to assess the behaviour of ex-
isting systems. We look at PostgreSQL, which does not sup-
port online schema changes; MySQL, which supports basic
online schema changes; and pt-online-schema-change, which
is a tool for MySQL that uses triggers to implement online
schema changes. We found that none of the existing systems
fulfill our requirements. In particular, existing non-blocking
solutions can not maintain the ACID guarantees when com-
posing schema transformations. This leads to intermediate
states being exposed to database programs, which are non-
trivial to handle correctly. As a solution direction, we pro-
pose lazy schema transformations, which can naturally be
composed into complex schema transformations that prop-
erly guarantee the ACID properties, and which have mini-
mal impact on concurrent transactions.

1. INTRODUCTION
Software is in constant need of maintenance, adaptation

and extension. For applications storing and maintaining
data in a database, a software change often involves restruc-
turing of data, i.e., a schema change with an accompanying
conversion (or migration) of the data. However, current re-
lational database systems are ill-equipped for changing the
structure of the data while the database is in use, caus-
ing downtime for these applications. This is a real problem
in systems that need 24/7 availability [6], such as telecom-
munication systems, payment systems and control systems.
Unavailability can lead to inconveniences ranging from an e-
mail system being down, missed revenue in case of payment

systems not working, economic damage in case of service
level agreements not being met, to possibly life threatening
situations if medical records can not be retrieved. Not only
is this a problem in its own right, evolution of software is
also slowed down as developers tend to avoid making changes
because of the downtime consequences.

Problem Statement. The SQL standard, which is support-
ed by most relational database systems, allows the execu-
tion of schema changing commands such as ALTER TABLE
concurrently with other transactions. However, current re-
lational database management systems can not really exe-
cute these transformations in parallel with other transac-
tions. For example, PostgreSQL, one of the most advanced
open source databases, takes a global table lock when chang-
ing the schema of a table. The effect is that concurrent
transactions completely halt until the (possibly long) exe-
cution of the schema change has finished. The urgency to
solve this problem is evident by a multitude of tools de-
veloped in industry, such as pt-online-schema-change1, oak-
online-alter-table2, and the online-schema-change tool used
at Facebook3. Recently, also MySQL announced limited
support for online schema changes4, and Google has added
support for online schema changes to their F1 database [8].
In this paper, our goal is to show the extent of the problem,
and to draw the attention of the database community to the
problem of online schema changes.

Approach. To show the extent of the problem we exper-
imentally investigates how existing systems actually cope
with online schema changes. As representatives we chose
the two most popular open-source database systems: Post-
greSQL, which does not support online schema changes,
and MySQL, which has limited support for online schema
changes. In addition, we have investigated pt-online-schema-
change, which is a tool for MySQL that uses triggers to
implement online schema changes, and which serves as a
representative for similar tools that are based on the same
principles. We look at simple operations such as adding and
removing columns, but also complex operations like chang-
ing the cardinality of a relationship, or changing the primary
key of a table. Our results show that current solutions are
insufficient for complex schema changes, as they do not allow
non-blocking schema transformations to be composed while
1http://www.percona.com/doc/percona-toolkit/2.1/pt-online-schema-change.html
2http://openarkkit.googlecode.com/svn/trunk/openarkkit/doc/html/oak-online-alter-table.html
3https://www.facebook.com/notes/mysql-at-facebook/online-schema-change-for-mysql/430801045932
4http://dev.mysql.com/doc/refman/5.6/en/innodb-online-ddl.html

1

http://www.percona.com/doc/percona-toolkit/2.1/pt-online-schema-change.html
http://openarkkit.googlecode.com/svn/trunk/openarkkit/doc/html/oak-online-alter-table.html
https://www.facebook.com/notes/mysql-at-facebook/online-schema-change-for-mysql/430801045932
http://dev.mysql.com/doc/refman/5.6/en/innodb-online-ddl.html

guaranteeing correctness. As a solution to this problem, we
propose lazy schema transformations, which can provide this
kind of composition in a natural way.

Requirements. We have identified important classes of re-
lational schema transformations that we believe should be
supported by any online schema transformation mechanism.
These classes serve as a basis for our experiment, where we
experimentally investigate a representative transformation
for every class. We discuss these classes in Section 2. We
do not only investigate simple schema transformations, but
also complex schema transformations such as splitting and
joining tables. To identify important schema transforma-
tions, we consider database schemas that are implementa-
tions of entity-relationship models. Important transforma-
tions in this setting are logical transformations correspond-
ing to changes in the entity-relationship model, and physical
transformations that allow changes to the implementation of
an entity-relationship model as a relational database.
Furthermore, we have identified general requirements that

an online schema transformation mechanism should satisfy,
which we use to evaluate the behaviour of existing systems.
These requirements are discussed in Section 3. We assert
that, ideally, schema transformations should be performed
transactionally, i.e., satisfying the ACID properties, and
withminimal interference to concurrent transactions. More-
over, we require that non-blocking schema transformations
are composable, to allow complex schema transformations.
In Section 4 we discuss the state of the art in strategies
for performing online schema transformations, and evaluate
these strategies based on our requirements.

Experiment. Based on these requirements, we have set up
an experiment to evaluate the behaviour of existing systems
when performing schema changes, which we discuss in Sec-
tion 5. Our experiment is based on the industry standard
TPC-C benchmark, which models a complete order place-
ment system. The TPC-C schema shows sufficient diversity
to implement interesting schema changes, while it is small
enough to implement these schema transformations for a
large number of cases. For each of the relational schema
transformation classes described in Section 2, we pick a rep-
resentative schema transformation in the TPC-C schema,
we perform this schema transformation while the TPC-C
benchmark is running, and we measure the impact on the
TPC-C transaction throughput.

Results. Section 6 presents the results of our experiment.
Our main conclusion is that existing solutions are insuf-
ficient for complex transformations, as they do not allow
non-blocking schema transformations to be composed using
transactions. As a solution direction, we discuss lazy schema
transformations, which allow instantaneous access to data in
the new schema by transforming data on demand. This is
beneficial for complex transformations, as lazy transforma-
tions can naturally be composed. In Section 7 we discuss
the idea in more detail, where we also discuss challenges in
the implementation of this approach, and our ongoing work.

Contributions. The contributions of this paper are:
• Drawing attention to the problem that database sys-
tems cannot perform schema changes sufficiently con-

current with other transactions by experimentally in-
vestigating the extent and severity of this problem..
• Criteria for evaluating online schema transformation
mechanisms in general, and for the relational data
model in particular.
• An experimental investigation of the behaviour of ex-
isting systems: PostgreSQL, which does not support
online schema changes, MySQL, which supports ba-
sic online schema changes, and the pt-online-schema-
change tool for MySQL, as a representative for tools
that implement online schema changes on existing sys-
tems using triggers.
• A solution direction for complex non-blocking trans-
formations based on lazy schema transformations.

2. RELATIONAL TRANSFORMATIONS
In this section we identify important classes of relational

schema transformations that could be required in practice,
and which we use in our experiments. We do not make any
a priori assumptions about the difficulty of schema trans-
formations or the capabilities of existing systems. As such,
the transformations that we consider range from very simple
single-relational transformations to complex multi-relational
transformations. To identify important schema transforma-
tions, we consider databases that are implementations of
Entity-Relationship (ER) models. We consider logical trans-
formations that correspond to changes in the ER model, and
physical transformations that correspond to changes in the
implementation decisions of these ER models.

ER Models and Implementations. ERmodelling is a stan-
dard method for high-level modelling of databases [1]. In
the ER model, a domain is modelled using entities and rela-
tionships between these entities, where entities have named
attributes, and relationships have a cardinality of either 1-
to-1, 1-to-n or n-to-m. An ER model can be translated to
a relational database schema in a straightforward manner:
Entities are represented as relations, attributes are mapped
to columns and relationships are encoded using foreign keys.
Several implementation decisions are made in this trans-
lation, for example, which types to use for the attributes
and which indices to create. Based on this, we can iden-
tify two kinds of schema transformations: logical transfor-
mations that correspond to changes in the ER model, and
physical transformations that correspond to changes in the
implementation decisions.

ER Model Transformations. For our experiments, we con-
sider logical transformations on a relational database that
correspond to the following transformations on ER models:

• Creating, renaming and deleting entities and attributes.
• Changing constraints on attributes, such as unique-
ness, nullability and check constraints.
• Creating and deleting relationships, and changing the
cardinality of relationships.
• Merging two entities through a relationship into a sin-
gle entity, and the reverse, splitting a single entity into
two entities with a relationship between them.
• Moving attributes from an entity to another entity
through a relationship.

Note that certain changes in the ER model do not result
in an actual change of the database schema, but only in a

2

data transformation. For instance, changing the currency of
a price attribute is an example of an ER-model transforma-
tions that needs no database schema change, but only a data
transformation. Such schema transformations correspond to
normal bulk updates.

Implementation Transformations. Furthermore, we also
consider physical transformations on relational databases
that correspond to changes in the implementation decisions:

• Changing the names and types of columns that repre-
sent an attribute.
• Changing a (composite) primary key over attributes to
a system generated surrogate key, such as a sequential
number, and vice versa.
• Adding and removing indices.
• Changing the implementation of relationships to either
store tuples of related primary keys in a separate table,
store relationships in an entity table (for 1-to-n and
1-to-1 relationships), or merging of entity tables that
have a 1-to-1 relationship.
• Changing between computing aggregations on-the-fly,
or storing precomputed values of aggregations.

The above set of transformations is by no means com-
plete, but it provides a important subset of schema changes
with which we can experimentally compare the behaviour of
different online schema change mechanisms.

3. GENERAL CRITERIA
In this section we discuss general criteria on the mecha-

nisms provided by a system to support non-blocking schema
transformations. We use these criteria as the basis for our
experiment to compare and evaluate existing systems, as
discussed in Section 5. We make no assumptions about the
specific strategies used to perform online schema transfor-
mations. Moreover, these criteria also apply to data models
other than the relational model. We specify criteria both
on the functionality of schema transformations and on their
performance. For every criterion, we discuss the ideal be-
haviour of the schema transformation mechanism, and we
also discuss what behaviour we would still consider accept-
able for systems that must be online 24/7.

Functional Criteria. First, we specify criteria on the func-
tionality provided by a schema transformation mechanism:

1. Expressivity. Ideally, an online schema transforma-
tion mechanism can perform any conceivable schema
transformation online. For example, in the relational
model this would be all schema transformations that
can be expressed in SQL. However, in practice, it could
be sufficient if we can only perform a subset of all possi-
ble transformations online. For instance, the subset of
transformations that we have discussed in the previous
section allows transformations between any relational
schema that is an implementation of an ER model.

2. Transformation of Data. After executing a schema
change on a database, all existing data must be avail-
able in the new schema. This is the main challenge
in performing schema transformations online, and any
lesser guarantees are generally unacceptable.

3. Transactional Guarantees. For the correctness of
database programs, and to ensure database integrity,
it is important that schema transformations satisfy the
ACID properties, as is currently the norm for OLTP
transactions. In particular, we expect the following
properties for schema transformation transactions:

(a) Serializability. The execution of transforma-
tions must have serializable semantics. If this is
not the case, concurrent transactions may observe
partially transformed states, i.e., where data is
available in two different schemas.

(b) Failure Atomicity. Schema changes must be ro-
bust in the event of system failure. It may never
be the case that data is lost, that a database
is left in a partially transformed state, or that
a database is left in an intermediate state of a
transformation.

(c) Composability. Systems must allow transac-
tional composition of basic schema transforma-
tions into more complex transformations, while
maintaining transactional guarantees. If this is
not possible, intermediate schemas are visible to
other transactions, which then have to handle
these intermediate states. Moreover, system fail-
ure may leave the system in an intermediate state
after recovery. For some applications these issues
may be acceptable, but handling them comes at
the cost of additional development effort.

(d) Adapting Programs. There must be a mecha-
nism to ensure that database programs can adapt
to the new schema, and continue to operate cor-
rectly during and after the schema transforma-
tion. This can for example be achieved by updat-
ing stored procedures as part of a schema trans-
formation. Alternatively, the system can trans-
late existing stored procedures automatically to
the new schema, or translate operations on the
old schema to operations on the new schema.

Performance Criteria. Second, we specify criteria on the
performance of online schema change mechanisms, where we
assume that OLTP transactions and schema transformation
transactions are executing concurrently. We first discuss the
impact of schema transformations on OLTP transactions,
and then we describe performance criteria for the schema
transformations themselves.

1. Impact of a schema transformation on concur-
rent transactions Just like any other heavy trans-
action, executing a schema change concurrently with
other transactions will have an impact on those trans-
actions. We distinguish several kinds of impact and
discuss what may be acceptable or not:

(a) Blocking. Transactions should always be able to
make progress independent of the progress of con-
current schema transformations. Ideally, a schema
transformation should never block the execution
of concurrent transactions, with the exception of
possibly very short periods of time. Similarly,
schema transformation mechanisms must never

3

prevent new transactions from starting while a
schema transformation is in progress.

(b) Slowdown. A general slowdown in throughput
and latency of transactions is acceptable to a cer-
tain degree, depending on the application. Ide-
ally, slowdown is independent from the complex-
ity of transformations, i.e., slowdown has a pre-
dictable upper bound, and more complex trans-
formations can be performed without causing ad-
ditional slowdown. Slowdown that depends on
the complexity of the transformation is accept-
able to a certain extent, however, this may impose
limitations on the complexity or number of trans-
formations that can be performed concurrently.

(c) Aborts. Ideally, schema transformations never
cause transactions to abort. Especially for long
running transactions such aborts are problematic.
Due to their nature, it is acceptable to abort op-
timistically executed transactions, however, ide-
ally the database system can transparently and
successfully retry those transactions without any
severe consequences for the application programs
who issued these transactions.

2. Performance criteria for online schema trans-
formations For online schema transformations, we
have identified different requirements:

(a) Time to Commit. The time to commit defines
how long it takes for the results of a schema trans-
formation to be visible to other transactions. For
very large databases, the time to commit can be-
come very long, which can be unacceptable in
time critical situations. We want to distinguish
time to commit from the transformation time,
which is the total amount of time needed to trans-
form all data in the database. For mechanisms
that commit only after all data has been trans-
formed, the time to commit is about the same as
the transformation time, which should obviously
be minimal. However, we also want to consider
lazy transformation of data, i.e., transformation
of data after the transformation has been com-
mitted. In this case the time to commit is gen-
erally much shorter than the actual transforma-
tion time, and as long as concurrent transactions
are not impacted, the actual transformation time
does not matter.

(b) Aborts and Recovery. Due to their long run-
ning time, it is generally not acceptable to abort
schema transformations due to concurrency is-
sues. As an exception, aborting immediately af-
ter starting the transformation is acceptable, for
instance, in case a conflicting schema transfor-
mations is already in progress. Moreover, aborts
due to semantic reasons, such as constraint vio-
lations, cannot be avoided. In case of a system
failure during a transformation, ideally the sys-
tem can recover and continue execution of the
transformation. However, due to the rarity of
system failures, aborting the transaction could be
acceptable. It is important that recovery from an

abort also minimizes impact on concurrent trans-
actions. Finally, a request for schema transforma-
tion should only be rejected if there is a conflicting
uncommitted schema transformation; processing
of any schema transformation that has already
been committed should not delay the start of an-
other schema transformation.

(c) Memory Usage. Ideally, a schema transforma-
tion requires only a constant amount of additional
memory. However, it could be acceptable if more
memory is needed, as long as this is within ac-
ceptable limits.

Discussion. This list of criteria is new, but we are not the
first to define requirements for online schema transforma-
tions. In a survey on online reorganization of databases,
Sockut also discusses requirements for strategies that per-
form online reorganizations [10]. They consider not only
logical and physical reorganizations, but they also have a
strong focus on maintenance reorganizations, i.e., changing
the physical arrangement of data. Their main requirements
are correctness of reorganizations and user activities; tol-
erable degradation of user activity performance during re-
organizations; eventual completion of reorganizations; and,
in case of errors, data must be recoverable and transforma-
tions must be restartable. Our main addition to these re-
quirements is that basic transformations should be compos-
able into complex transformations using transactions, while
maintaining transactional guarantees and satisfying the per-
formance requirements. In addition, we also require that
database applications can be changed as part of a schema
transformations. A difference in our requirements is that
instead of requiring eventual completion of transformations,
we only consider the time to commit, and leave the mat-
ter of progress as an implementation detail to the database,
which may choose to make progress if this reduces impact
on running transactions.

4. STATE OF THE ART
In this section we briefly discuss the state of the art in

techniques for online schema transformations. First, we dis-
cuss Ronströms method [9], which is used by tools such
as pt-online-schema-change. Next, we discuss the log redo
method by Løland and Hvasshovd [4], which improves on
Ronströms method. We also briefly discuss recent work on
online schema changes in the Google F1 database [8], and
work on lazy schema transformations by Neamtiu et al. [5].

On-line Schema Update for a Telecom Database. Ron-
ström describes a method for online changing of columns,
adding indices, and horizontally and vertical splitting and
merging of tables by using database triggers [9]. The idea be-
hind this method is as follows. First, new tables that match
the desired schema are created. Next, triggers are created
on the original tables that ensure that any update on the old
tables are reflected on the new tables. Next, data is copied
from the old tables to the new tables in small batches, while
performing the desired schema transformation on the data.
Finally, after copying the data, the old tables are removed
and the new tables are used instead.

4

An interesting benefit of Ronströms method is that it is
easy to integrate with existing database systems. For in-
stance, pt-online-schema-change is based on the techniques
by Ronström, though it does not implement horizontal and
vertical splitting of tables. Another benefit is that construct-
ing the new schema next to the old schema allows programs
to be tested on the new schema while the old schema is still
in use. Moreover, long running transactions can continue ex-
ecuting on the old schema, while the new schema is in use.
However, a drawback of this method is that memory is re-
quired to maintain two tables, and that the use of database
triggers decreases the performance for all database updates.
Moreover, copying the database slows down other transac-
tions, and the new schema can not be used until copying is
complete.
Ronström’s method only provides ACID guarantees for

individual transformations. For complex transformations
that consist of multiple schema transformations, Ronström
proposes the use of SAGA’s. The idea of SAGA’s is to exe-
cute the individual operations of a transaction as a sequence
of transactions, where for each operation an undo opera-
tion is provided that can be used to rollback the complete
sequence [3]. While SAGA’s provide failure atomicity for
composed transactions, they do not provide serializable se-
mantics. This means that database programs must be able
to handle intermediate states.

Online, Non-blocking Relational Schema Changes. Lø-
land and Hvasshovd improve on Ronström’s method by in-
troducing log redo as an alternative to using triggers [4].
Similar to Ronström’s method, a transformed copy of a
source table is made without locking the source table, but
their method differs from that of Ronström in that they do
not use triggers to synchronize the source and target tables.
In Løland and Hvasshovd’s method, all transactions on the
source table are logged, and after copying is done, incon-
sistencies in the copied table are repaired by propagating
the logged changes to the copied table. Although no direct
comparison has been made with Ronströms method, exper-
iments by the authors show that their method has minimal
impact on the performance of concurrent transactions.
Compared to Ronström’s method, a drawback of log redo

is that it has to be implemented at the database level, and
to our knowledge, no implementation is available for main-
stream database systems. Another difference from Ron-
ströms method is that the data in the old schema is not
synchronized with the data in the new schema after the
transformation has completed. Thus losing the ability to
perform tests on the new schema, and long running trans-
actions cannot continue execution on the old schema.

Online Schema Change in F1. Rae et al. investigate on-
line schema change in the Google F1 database [8], which is
a relational DBMS built on top of a distributed key-value
store. The distributed setting introduces additional com-
plications, as inconsistencies between schemas in different
nodes can lead to incorrect behaviour. Their solution is to
split a complex schema change into a sequence of simpler
schema changes, of which each guarantees not to cause con-
flicting operations on the distributed state. For example,
deleting a column can lead to inconsistencies if some nodes
are still writing new data. However, if the column is first
made delete-only, and is deleted later, this can not occur.

Their work essentially extends the idea of SAGA’s to allow
consistent operations in a distributed setting. This means
that complex schema transformations still expose interme-
diate states to database programs.

On-the-fly, March-Forward Schema Updates. Neamtiu
et al. propose on-the-fly (lazy) updates of databases [6].
In their approach, a schema change command can specify
multiple operations on multiple tables. Upon access of a
table, a safety check is performed to see if a schema change
is in progress. If so, data is transformed before it can be
accessed. The authors have implemented a prototype in
SQLLite, and have performed experiments, showing very
short time to commit and low overhead.
The main benefit of their approach is that schema trans-

formations have very low time to commit, as the work is
performed lazily. However, their implementation does not
allow a new schema transformation to start before any run-
ning schema transformation has completed. Their approach
allows for composition of schema transformations to a lim-
ited degree, as an update operation can consist of multiple
operations on multiple tables. However, they only support
relatively simple operations, such as adding and removing
relations and columns. Complex operations such as split-
ting and joining relations are mentioned as future work.

Discussion. To our knowledge, none of the existing tech-
niques for non-blocking schema transformations allow for
composition while maintaining ACID guarantees. The use
of SAGA’s, which do not provide serializability, is the state
of the art for composed transformations. However, as we
discuss in Section 7, we believe that lazy transformations
are a promising approach to solve this problem.

5. EXPERIMENTAL SETUP
We use the TPC-C benchmark specification as a basis for

an experiment to investigate to what degree schema trans-
formations can be performed online in existing database sys-
tems. To investigate the behaviour of existing systems, we
perform a schema transformations while concurrently run-
ning the TPC-C benchmark on the database that is being
transformed. More concretely, we define two extensions to
the TPC-C benchmark. First, we define concrete schema
transformations for the TPC-C schema that are representa-
tive for the transformations identified in Section 2. Second,
we describe a benchmark process that specifies how our ex-
periments should be performed, and we discuss the inter-
pretation of the results with regard to the non-functional
requirements as discussed in Section 3 are satisfied.

The TPC-C Benchmark. The TPC-C benchmark is an in-
dustry standard OLTP benchmark that simulates an order-
entry environment, where users can perform transactions to
enter and deliver orders, record payments, check the status
of orders, and monitor the level of stock at warehouses5. Fig-
ure 1 shows a high-level overview of the TPC-C benchmark
schema. TPC-C specifies the generation of databases of ar-
bitrary sizes by varying the number of warehouses W . The
workload consists of a number of concurrent terminals exe-
cuting transactions of five types: New Order, Payment, Or-
der Status, Delivery and Stock Level. The transaction type
5http://www.tpc.org/tpcc/spec/tpcc_current.pdf

5

http://www.tpc.org/tpcc/spec/tpcc_current.pdf

Relation Transformations
create-relation Create a new relation TEST.
rename-relation Rename ORDER-LINE to ORDER-LINE-B. Change the stored procedures to use ORDER-LINE-B instead of

ORDER-LINE.
remove-relation-a Copy ORDER-LINE to ORDER-LINE-B. Drop ORDER-LINE. Change the stored procedures to use ORDER-

LINE-B instead of ORDER-LINE.
remove-relation-b Copy ORDER-LINE to ORDER-LINE-B. Drop ORDER-LINE-B.

Column Transformations
remove-column-a Copy OL_AMOUNT to OL_AMOUNT_B. Drop OL_AMOUNT_B.
remove-column-b Copy OL_AMOUNT to OL_AMOUNT_B. Drop OL_AMOUNT. Change the stored procedures to use

OL_AMOUNT_B instead of OL_AMOUNT.
add-column-a Create OL_TAX as NULLABLE of the same type as OL_AMOUNT.
add-column-b Create OL_TAX as NULLABLE of the same type as OL_AMOUNT. Change the stored procedures to set

OL_TAX to OL_AMOUNT upon insertion.
add-column-default-a Create OL_TAX as NOT NULL of the same type as OL_AMOUNT.
add-column-default-b Create OL_TAX as NOT NULL of the same type as OL_AMOUNT. Change the stored procedures to set

OL_TAX to OL_AMOUNT upon insertion.
add-column-derived-a Create OL_TAX as NOT NULL and initial value OL_AMOUNT × 0.21.
add-column-derived-b Create OL_TAX as NOT NULL and initial value OL_AMOUNT × 0.21. Change the stored procedures to set

OL_TAX to OL_AMOUNT upon insertion.
rename-column-a Rename column OL_AMOUNT to OL_AMOUNT2. Change the stored procedures to use OL_AMOUNT2

instead of OL_AMOUNT.
rename-column-b Copy column OL_AMOUNT to OL_AMOUNT2 Rename column OL_AMOUNT2 to OL_AMOUNT3.
change-type-a Change OL_NUMBER to use a greater range of integers.
change-type-b Split OL_DIST_INFO into two columns OL_DIST_INFO_A and OL_DIST_INFO_B. Change the stored

procedures to split the value for OL_DIST_INFO into two parts upon insertion, and to concatenate the values
upon retrieval.

Index and Uniqueness-Constraint Transformations
create-index-a Create an index on OL_DELIVERY_D.
create-index-b Create an index on OL_I_ID.
remove-index-a Execute create-index-a. Drop the index created by create-index-a.
remove-index-b Execute create-index-b. Drop the index created by create-index-b.
create-unique-a Create a column OL_U, and fill this with unique values. Add a uniqueness constraint on OL_U.
create-unique-b Create a column OL_U, and fill this with unique values. Add a uniqueness constraint on OL_I_ID and OL_U.
remove-unique-a execute create-unique-a. Drop the uniqueness constraints created by create-unique-a.
remove-unique-b Execute create-unique-b. Drop the uniqueness constraints created by create-unique-b.

Constraint Transformations
create-constraint Create a constraint to validate that 1 ≤ OL_NUMBER ≤ O_OL_CNT
remove-constraint Execute create-constraint-a. Drop the constraint created by create-constraint-a

Multi-Relational Transformations
change-primary Add an auto increment column O_GUID. Add a column OL_O_GUID, and set its value to the O_GUID of the

corresponding order. Set (OL_O_GUID, OL_O_NUMBER) as the primary key. Drop OL_O_ID, OL_D_ID
and OL_W_ID. Add a column NO_O_GUID, and set its value to the O_GUID of the corresponding order.
Drop NO_O_ID, NO_D_ID and NO_W_ID. Set NO_O_GUID as the primary key. Drop O_ID. Update
the stored procedures to use the new structure, change STOCK_LEVEL to select the top 20 rows ordered by
O_GUID instead of the condition OL_O_ID >= (ST_O_ID - 20).

split-relation Create a table ORDER-ORDER-LINE with columns OOL_O_ID, OOL_D_ID, OOL_W_ID, OOL_OL_ID
and OOL_NUMBER. Create auto increment column OL_ID as primary key. Insert all tuples (OL_O_ID,
OL_D_ID, OL_W_ID, OL_ID, OL_NUMBER) into ORDER_ORDER_LINE. Drop columns OL_O_ID,
OL_D_ID, OL_W_ID, OL_ID and OL_NUMBER. Update the stored procedures to use the new structure.

join-relation Execute split-relation. Add columns OL_O_ID, OL_D_ID, OL_W_ID and OL_NUMBER and set their val-
ues to the corresponding values in ORDER-ORDER-LINE. Drop OL_ID, and set primary key (OL_O_ID,
OL_D_ID, OL_W_ID, OL_NUMBER). Drop relation ORDER-ORDER-LINE. Update the stored procedures
to use the original stored procedures.

defactorize Add column OL_CARRIER_ID, and set its value to O_CARRIER_ID of the corresponding order. Drop column
O_CARRIER_ID. Update the stored procedures to use the new structure.

factorize Execute defactorize. Add column O_CARRIER_ID, and set its value to OL_CARRIER_ID for the correspond-
ing order line where OL_NUMBER = 1. Drop column OL_CARRIER_ID. Update the stored procedures to use
the original stored procedures.

factorize-boolean Add boolean column O_IS_NEW, and set its value to true if NEW-ORDER contains the corresponding order,
otherwise set it to false. Drop relation NEW_ORDER. Update the stored procedures to use the new structure.

defactorize-boolean Execute factorize-boolean. Create table NEW-ORDER as original. Insert the primary key of all orders into
NEW-ORDER where O_IS_NEW = true. Drop column O_IS_NEW. Update the stored procedures to use the
original stored procedures.

precompute-aggregate Add column O_TOTAL_AMOUNT and set its value to the sum of OL_AMOUNT of the corresponding order
lines. Update the stored procedures to update O_TOTAL_AMOUNT when inserting order lines, and to use
O_TOTAL_AMOUNT instead of computing the aggregate.

DATA TRANSFORMATIONS
change-data Set OL_AMOUNT to OL_AMOUNT × 2.

Table 1: Experiment specification.

6

Figure 1: TPC-C Benchmark Schema.

is selected at random, following a distribution as specified
by TPC-C. The TPC-C benchmark measures the number of
New Order transactions per minute. Additionally, TPC-C
also specifies response time constraints for all transaction
types.
For our experiment, we use the TPC-C benchmark essen-

tially unmodified. This means that existing TPC-C bench-
mark implementations can be used. However, we assume
that the TPC-C transactions are implemented as stored pro-
cedures that can be changed as part of a schema transfor-
mation.

Experiment Definitions. In this section we describe our
experiments at a high level. For the full specification of the
experiments, we refer the reader to the technical report that
accompanies this paper [15]. Our specifications are database
independent, only describing the semantic transformation at
the relational level. We do not prescribe a specific imple-
mentation of the transformations, as we do not want to pre-
clude the use of features provided by the database system.
For each experiment specification, if possible, we have im-
plemented versions for PostgreSQL, MySQL and pt-online-
schema-change, which can be accessed from our website6.
We define most schema transformations on the ORDER-

LINE table, which is the largest table in populated TPC-
C databases. Transformations affecting multiple tables are
mostly performed on the ORDERS and ORDER-LINE ta-
bles. Some transformations have a preparation part, where
the TPC-C schema is transformed prior to the actual trans-
formation that we want to evaluate. We use this to experi-
ment with inverse transformations of many multi-relational
transformations. For instance, we have an experiment where
a table is split, which we also use as the preparation phase
for a transformation where we rejoin the tables to obtain
the original TPC-C schema.
Many transformations change the stored procedures, so

that the TPC-C benchmark can continue running on the
transformed schema. For many transformations, we have
implemented two versions. First, a version where the trans-
formation does not affect the stored procedures of the TPC-
C benchmark, such as adding a column that is not used by
the TPC-C stored procedures. Second, a version where the
stored procedures are affected, such as removing a column

6http://wwwhome.cs.utwente.nl/~weversl2/?page=ost

used by the TPC-C benchmark while changing the stored
procedures to use another column.
Based on the requirements as defined in Section 2, we have

defined schema transformations in the following categories:

• Relations Creating, deleting and renaming relations.
• Columns Adding columns without and without de-
fault values, adding columns with values derived from
other columns, renaming columns, removing columns
and changing the types of columns.
• Indices Creating and removing indices and unique-
ness constraints.
• Constraints Creating and removing constraints.
• Data Changing data in bulk transactions.
• Multi-relation transformationsWe perform the fol-
lowing operations in both directions:

– change-primary: Changing the primary key of
ORDER-LINE from a composite key to a serial
integer surrogate key.

– split-relation: Encode the relation between OR-
DER and ORDER-LINE in a separate table OR-
DER-ORDER-LINE by splitting ORDER-LINE.

– defactorize: Moving CARRIER_ID in ORDER
to ORDER-LINE, such that each order line can
have a different carrier.

– defactorize-boolean: Encoding entries in NEW-
ORDER, which models a set of new orders, as a
boolean field IS_NEW in ORDER.

– precompute-aggregate: Precomputing the to-
tal amount of an order, instead of computing it
upon every request.

Table 1 shows the detailed specification of our experi-
ments. We prefix all column names with the abbreviated
table name, to avoid having to write the full table name.
For example, OL_NAME is a column in order line. and
O_NAME is a column in ORDERS. The preparation part
of experiments is presented in italics. For some experiments,
the preparation part is the result of the transformation per-
formed by another experiment.

Process. For our experiments we use a standard TPC-C
benchmark load. The load consists of multiple threads con-
tinuously executing randomly chosen TPC-C stored proce-
dures on the database. After each transaction attempt, the
type of transaction, its starting time and its end time are
logged. Failed transactions are logged with type ERROR.
The execution of an experiment is done in multiple phases:

setup of the database, preparation, intro, transformation,
and outro. First, we create a TPC-C database. Then, if
necessary, we perform a preparation transformation. Then,
we start the TPC-C benchmark load, where we log the exe-
cuted transactions. Next, in the intro phase we wait for 10
minutes before starting the transformation, while measuring
the baseline TPC-C performance. After the 10 minutes have
passed, we start the execution of the actual transformation.
We log the transformation begin and end time. Finally, we
wait for another 10 minutes to measure the performance of
TPC-C in the outro phase.
To analyse the behaviour of the online schema change

mechanism, we present the result of an experiment as a his-
togram that plots the TPC-C transaction execution rate in
time intervals of fixed length. In the histogram, we mark

7

http://wwwhome.cs.utwente.nl/~weversl2/?page=ost

the start and commit time of the transformation with ver-
tical lines. If a schema transformation is non-blocking, we
expect to see either no effect on the TPC-C execution rate
or a reduction in performance during the transformation. If
a schema transformation is blocking, we see a zero TPC-C
execution rate for extended periods of time.

6. EXPERIMENTAL RESULTS
In this section we present the results of performing our ex-

periments on three systems. First, we look at PostgreSQL,
which is one of the most advanced open source database sys-
tems. PostgreSQL does not support online schema transfor-
mations, except for the creation of indices, but it does allow
certain operations to be performed instantaneously. Next,
we look at MySQL, which is interesting as it has recently
added support for online schema transformations, and which
is one of the first to do so. Finally, we look at pt-online-
schema-change, which uses Ronströms method as discussed
in Section 4, to perform online schema transformations on
MySQL databases using triggers. These kinds of tools are
interesting, as they can add support for non-blocking schema
changes to any database system that supports triggers.
We use the TPC-C implementation HammerDB7 to pro-

vide scripts for generating the schema and to populate the
database, and to provide stored procedures. HammerDB
supports a number of database implementations, including
both PostgreSQL and MySQL. We use HammerDB to gen-
erate one database per database implementation, which we
backup once, and which we restore in the setup phase of
every experiment. Before starting the introduction phase of
the experiment, we let the TPC-C benchmark run for ten
seconds, as to give the database system some time to warm
up. Finally, to generate load on the system, and to mea-
sure the TPC-C performance, HammerDB provides a driver
script. However, as this script does not perform logging of
transactions, we have ported the script to Java and we have
added logging facilities. For all experiments, we generate a
database of 30 warehouses, and we use 64 threads of load on
the database. We do not spawn new threads to start other
transactions while a thread is blocked.
For the experiments we have used a quad-core Intel i7

machine with 16GB of RAM and a solid-state drive. For
the software we used Ubuntu Linux kernel 3.20.0, Post-
greSQL version 9.1.14, MySQL version 5.6.20, pt-online-
schema-change version 2.2.11 and HammerDB version 2.14.

6.1 PostgreSQL
First, we look at PostgreSQL, which is one of the most ad-

vanced open source databases. PostgreSQL supports trans-
actional schema transformations, but except for online cre-
ation of indices, it does not have support for online schema
transformations. However, many transformations in Post-
greSQL can be performed instantaneously. We discuss the
results of our experiments in the paragraphs below.

Relations. As would be expected, creating, deleting and
renaming relations are instantaneous operations that do not
affect running transactions.

7http://hammerora.sourceforge.net/

Columns. Removing and renaming columns are instanta-
neous operations, as well as adding columns without a de-
fault value. These operations take about a second to ex-
ecute, but they are blocking. In practice this means that
if these transformations are composed with long running
transformations, the composed transformation is blocking
as well. Interestingly, adding a column with a default value
blocks access to the database for a much longer time, about
73 seconds, as shown in Figure 2a. Adding a derived col-
umn is a more complex operation, as it requires an ALTER
TABLE to add a column, and an UPDATE to fill the column. As
the ALTER TABLE takes a table lock, the whole operation is
blocking, as shown in Figure 2b. Finally, changing the type
of a column is a blocking operation, as shown in Figure 2c.

Indices and Uniqueness Constraints. PostgreSQL allows
indices to be created online using the CREATE INDEX CONCUR-
RENTLY statement. Figure 2d shows the behaviour of Post-
greSQL when creating an index, which took about 60 min-
utes to complete. Figure 2e shows the same situation, but
omitting the CONCURRENT keyword, so that PostgreSQL cre-
ates the index while blocking access to the table. Now, cre-
ating the index only takes about 35 seconds. I.e. in this case,
creating the index online is about 100 times slower than cre-
ating the index offline. However, we should note that this
can be explained by the system being under constant heavy
load. Removing indices and uniqueness constraints are in-
stantaneous operations.
Interestingly, PostgreSQL allows uniqueness constraints

to be added online. An index is build up concurrently, and
all rows that are inserted are checked against the index that
has been built so far. If the constraint is violated, building
the index is aborted. Figure 2f and Figure 2g show the be-
haviour of PostgreSQL when adding uniqueness constraints
concurrently. Note that the execution time of create-unique-
a is quite long, about 145 minutes, but at no point do the
TPC-C transactions block.

Constraints. Adding a CHECK constraint in PostgreSQL is
a blocking operation. However, PostgreSQL has a facility
to add constraints without checking validity, and allows val-
idating constraints later. However, in our version of Post-
greSQL this only works for foreign key constraints, and not
for check constraints.

Data Transformations. For data-only schema transforma-
tions, we perform an UPDATE statement under SERIALIZABLE
isolation level. In our experiments, the UPDATE invariably
fails due to contention from the TPC-C transactions. To
avoid this, we had to explicitly get an exclusive lock on the
table, which leads to a blocking transformation, as shown in
Figure 2h.

Multi-Relation Transformations. Any complex multi-re-
lational transformations can not be performed online in Post-
greSQL, due to the fact that ALTER TABLE takes a table
lock which it holds for the entire transaction. For exam-
ple, see Figure 2i, Figure 2j or Figure 2k. An interesting
case is defactorize-boolean, as shown in Figure 2l, which
does not block running transactions. The schema trans-
formation does not update the existing table, but creates a
new table from the existing table. While we could not verify

8

http://hammerora.sourceforge.net/

-10:00 0:00 1:13 11:13
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000
Tr

an
sa

ct
io

ns
 p

er
 m

in
ut

e
postgresql

(a) add-column-default-a

-10:00 0:00 3:43 13:43
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(b) add-column-derived-a

-10:00 0:00 1:13 11:13
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(c) change-type-a

-10:00 0:00 60:46 70:46
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(d) create-index-b concurrent

-10:00 0:35 10:35
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(e) create-index-b
non-concurrent

0:00 144:46
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(f) create-unique-a

-10:00 0:00 15:25 25:25
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(g) create-unique-b

-10:00 0:00 2:36 12:36
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(h) change-data

-10:00 0:00 4:53 14:53
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(i) defactorize

-10:00 0:00 3:02 13:02
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(j) split-relation

0:00 80:25
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(k) join-relation

-10:00 0:00 26:15 36:15
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(l) defactorize-boolean
Figure 2: Experimental results for PostgreSQL. Successful transactions are plotted in black,

erroneous transactions are plotted in red.

-10:00 0:00 6:55 16:55
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql
mysql

Figure 3: Comparing PostgreSQL and MySQL:
add-column-default-a

this, we expect that this transformation is incorrect because
the TPC-C transactions are not executed in SERIALIZABLE
mode. As the schema transformation runs in SERIALIZABLE
mode, it is likely that the new table is created from a snap-
shot, and any updates on the original table during the trans-
formation are not reflected in the new table.

Summary. PostgreSQL shows the following behaviour with
respect to our criteria:
• Schema transformations generally execute correctly due
to transactional schema transformations.
• Indices can be created without blocking. All other
single-statement transformations are blocking, but some
can be executed instantaneously.
• Complex multi-statement transformations are block-
ing due to table locks.
• Explicit locking is required when using UPDATE state-
ments to avoid aborts due to concurrency conflicts.

6.2 MySQL
Since MySQL version 5.6, the InnoDB storage engine fea-

tures support for online schema transformations in the form
of online DDL8, which allows certain ALTER TABLE oper-
ations to be performed online. Some operations still re-
quire table locks, and there are brief periods where a trans-
formations takes an exclusive lock9. In contrast to Post-
greSQL, MySQL implicitly commits every schema transfor-
mation statement immediately after completing its execu-
tion10. Moreover, locks are released after a schema trans-
formation statement is executed, so it is not possible to en-
force table locks over multiple operations. This means that
MySQL provides no mechanism that can guarantee correct-
ness of multi-statement schema transformations, which has
several implications:
• Intermediate states of complex schema transformations
are visible to concurrent transactions.
• System failure during a schema transformation can
leave a database in an intermediate state.
• Schema transformations can not be rolled back.
Moreover, we cannot atomically change a set of a stored

procedures as part of a schema transformation. For exper-
iments where we have to change stored procedures, we can
do this either before or after the schema transformation. If
we change the stored procedures before the transformation,
stored procedures may perform incorrect operation on the
old schema. Similarly, if we change the stored procedures

8http://dev.mysql.com/doc/refman/5.6/en/innodb-online-ddl.html
9http://dev.mysql.com/doc/refman/5.6/en/innodb-create-index-limitations.html

10http://dev.mysql.com/doc/refman/5.6/en/implicit-commit.html

9

http://dev.mysql.com/doc/refman/5.6/en/innodb-online-ddl.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-create-index-limitations.html
http://dev.mysql.com/doc/refman/5.6/en/implicit-commit.html

-10:00 0:00 6:51 16:51
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000
Tr

an
sa

ct
io

ns
 p

er
 m

in
ut

e
mysql

(a) add-column-a

-10:00 0:00 12:28 22:28
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(b) add-column-derived-a

-10:00 0:00 22:07 32:07
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(c) remove-column-a

-10:00 0:00 1:49 11:49
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(d) change-type-a

-10:00 0:00 2:33 12:33
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(e) create-index-a

-10:00 0:00 11:57 21:57
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(f) create-index-b

-10:00 0:00 15:47 25:47
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(g) create-unique-a

-10:00 0:00 2:53 12:53
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(h) change-data

-10:00 0:00 14:18 24:18
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(i) defactorize

-10:00 0:00 36:24 46:24
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(j) change-primary-a

-10:00 0:00 2:23 12:23
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(k) split-relation

-10:00 0:00 7:58 17:58
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(l) join-relation
Figure 4: Experimental results for MySQL. Successful transactions are plotted in black,

erroneous transactions are plotted in red.

after the transformation, the old procedures may perform in-
correct operations on the new schema. Alternatively, stored
procedures can be dropped before a schema transformation,
and re-created after the transformation to simulate locking.
However, as this effectively causes blocking, we chose not to
do this, and instead observe the behaviour of MySQL if we
leave the stored procedures in place.

Relations. Like PostgreSQL, creating, renaming and re-
moving relations are instantaneous operations, and do not
affect running transactions.

Columns. Like PostgreSQL, renaming a column in MySQL
is an instantaneous operation. Figure 4a shows the be-
haviour of MySQL when adding a column without a default
value. In contrast to PostgreSQL, this is not an instanta-
neous operation. We do see the online schema change fea-
ture doing its work, as during the transformation the TPC-C
benchmark can continue executing transactions. However,
we also see that for a short time, no TPC-C transactions can
be performed at all. In Figure 3 we compare the behaviour
of MySQL and PostgreSQL when adding a column with a
default value. Interestingly, we see that the initial drop in
performance of MySQL has about the same duration as the
complete schema transformation in PostgreSQL. This means
that MySQL’s online transformations can still block concur-
rent transactions for a significant amount of time.
Figure 4b shows the behaviour of MySQL when adding a

column whose values are derived from that of another col-
umn. This case is implemented by adding a column using
ALTER TABLE, and then filling the column using UPDATE un-
der SERIALIZABLE isolation. Concurrent transactions can

continue executing while adding the new column, but dur-
ing the UPDATE, we see spurious errors in the TPC-C trans-
actions. Moreover, we doubt that the UPDATE is performed
correctly, because MySQL does not implement true serializ-
ability.
The behaviour of MySQL when removing a column is

shown in Figure 4c. Again, we see a significant drop in
performance for a short period of time. Moreover, consider-
ing that PostgreSQL can do this in 1.77 seconds, MySQL is
very slow at 22 minutes. However, we should note that it is
likely that the high load on the system is the cause of this.
Finally, changing the type of a column is a blocking oper-

ation, as shown in Figure 4d. However, running transactions
are not affected when changing the type of a column that is
not touched by the TPC-C transactions.

Indices and Uniqueness Constraints. Figure 4e shows
the behaviour of MySQL when creating an index concur-
rently on a column which is never read or updated. We
see a drop in performance, but no significant slowdown.
Surprisingly, when creating an index concurrently on a col-
umn that is also read and updated, the TPC-C transactions
are blocked, as shown in Figure 4f. Considering the online
schema change capabilities of MySQL, this is not what we
expected, also because PostgreSQL is able to handle this
case concurrently. When creating a uniqueness constraint,
we also see that MySQL is blocking, as shown in Figure 4g.

Data Transformations. Like PostgreSQL, we execute a
data transformation under SERIALIZABLE isolation level
in MySQL. Figure 4h shows the behaviour of MySQL when
updating all values in a table. In contrast to PostgreSQL,

10

0:00 102:35
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

pt-online-schema-change

(a) add-column-a
Chunk size 1000, load 64

0:00 14:44
Time in minutes since start

500

1000

1500

2000

2500

3000

3500

4000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

pt-online-schema-change

(b) add-column-a
Chunk size 1000, load 4

0:00 4:17
Time in minutes since start

500

1000

1500

2000

2500

3000

3500

4000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

pt-online-schema-change

(c) add-column-a
Chunk size 10000, load 4

0:00 14:58
Time in minutes since start

500

1000

1500

2000

2500

3000

3500

4000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

pt-online-schema-change

(d) change-type-a
Chunk size 1000, load 4

0:00 38:26
Time in minutes since start

500

1000

1500

2000

2500

3000

3500

4000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

pt-online-schema-change

(e) create-index-b
Chunk size 1000, load 4

0:00 132:32
Time in minutes since start

500

1000

1500

2000

2500

3000

3500

4000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

pt-online-schema-change

(f) create-unique-a
Chunk size 1000, load 4

Figure 5: Experimental results for pt-online-schema-change.

which required an exclusive lock to avoid deadlocks under se-
rializable isolation, MySQL was able to complete the trans-
formation without an exclusive lock. However, we do see
TPC-C transaction errors during the transformation. More-
over, MySQL does not implement true serializability, but
only snapshot isolation. I.e., the transformation is incorrect,
as updates by TPC-C transactions during the transforma-
tion are not transformed.

Multi-Relation Transformations. It is not possible to per-
form online multi-relation transformations correctly in My-
SQL, due to the fact that MySQL performs a commit after
each ALTER TABLE statement. Figure 4i and Figure 4j show
typical behaviour during a complex transformation. Either
the stored procedures perform incorrect operations on inter-
mediate states, as is the case for defactorize, or the stored
procedures cannot execute due to errors, as is the case for
change-primary-a. Moreover, we were unable to successfully
complete the execution of split-relation and join-relation due
to UPDATE statements coming to a deadlock with the TPC-C
transactions. This problem persisted even when an explicit
LOCK TABLES was used on the table being updated. Fig-
ure 4k and Figure 4l respectively shows the behaviour of
MySQL during the split-relation and join-relation transfor-
mations. We see many errors during the transformation, as
well as errors after the transformation, due to the transfor-
mation being unable to complete.

Summary. MySQL shows the following behaviour:

• Many single ALTER TABLE statements can be performed
transactionally.
• Some online ALTER TABLE statements can be performed
without blocking, but many still block for a significant
amount of time, and do no better than PostgreSQL of-
fline schema changes. Other ALTER TABLE statements
can not be performed online, and are thus blocking.
• Multiple-statement transformations can not be per-
formed transactionally, including updating of stored

procedures. Moreover, there is no facility to acquire
explicit locks to guarantee correctness of multiple state-
ment transformations. Consequently concurrent trans-
actions can perform incorrect operations which can de-
stroy data integrity, and the database can be left in an
intermediate state if there is a system failure during a
transformation.
• Transformations that involve UPDATE statements may
not able to complete successfully due to deadlocks.

6.3 pt-online-schema-change
The pt-online-schema-change tool from the Percona Tool-

kit11 can perform online schema changes on MySQL data-
bases. The tool accepts an ALTER TABLE statement, and
executes it transactionally. It is based on the technique de-
scribed by Ronström [9], as we have discussed in Section 4.
However, it does not support splitting and merging of tables.
A transformation in pt-online-schema-change can consist

only of a single ALTER TABLE statement. This means that
we can only modify one table at a time, and we can not
update stored procedures atomically. Within the context of
our experiment, pt-online-schema-change allows the follow-
ing transformations:
• Adding, removing and renaming columns, and chang-
ing the type of columns.
• Adding and removing indices.
• Adding and removing uniqueness constraints.
The pt-online-schema-change tool creates a new table with

the new schema, and copies the rows from the source table
to this new table. Copying is done in chunks of a certain
size, which can be configured using two strategies. First, a
fixed chunk size can be specified, and second, a fixed time
per chunk can be specified. While a chunk is being copied,
the copied rows are locked for writing. A larger chunk size
impacts concurrent transactions more due to locking, while
a shorter chunk size slows down the schema transformation.

11http://www.percona.com/doc/percona-toolkit/2.1/pt-online-schema-change.html

11

http://www.percona.com/doc/percona-toolkit/2.1/pt-online-schema-change.html

Effect of Chunk Size and Load. The chunk size and the
TPC-C benchmark load have a large effect on the perfor-
mance of pt-online-schema-change. This is because pt-online-
schema-change executes transactions in LOW PRIORITYmode,
to minimize slowdown for concurrent transactions. Fig-
ure 5a shows the behaviour of MySQL when pt-online-sche-
ma-change is used to add a column with a TPC-C load of
64 threads and chunk size 1,000. The time to commit is
very long, about 102 minutes, much longer than the 6:51
used by MySQL to perform the same operation. If we lower
the TPC-C load from 64 threads to only 4 threads, and keep
the chunk size at 1,000, pt-online-schema-change commits in
only 14:44, as shown in Figure 5b. If we increase the chunk
size to 10,000, pt-online-schema-change completes in 4:17,
as shown in Figure 5c, however, we also see a reduction in
TPC-C performance.

Results. Figure 5 also shows the results of the other exper-
iments, where we used a chunk size of 1,000, and a load of
4 threads. Interestingly, pt-online-schema-change can per-
form some operations online that MySQL can not, such as
changing the type of a column as shown in Figure 5d. We
also see that pt-online-schema-change does not exhibit the
initial drop in performance from which MySQL suffers. Fur-
thermore, pt-online-schema can create indices concurrently
in cases where MySQL fails, as shown in Figure 5e. It can
also create unique indices online as shown in Figure 5f, how-
ever, the time to commit for this transaction was quite high
at about 132 minutes, but which is still faster than Post-
greSQL. In general, due to the way pt-online-schema-change
works, most operations take a similar time to complete, ex-
cept for creating (unique) indices.

Summary. The pt-online-schema-change tool shows the fol-
lowing behaviour with respect to our criteria:

• Any individual ALTER TABLE statement can be per-
formed transactionally without blocking.
• There is a trade-off between fast time to commit, or
minimal impact on running transactions. The im-
pact on transactions is significant for a faster commit
time, and the commit time can be much higher than
MySQL’s equivalent operation when choosing for lower
impact on concurrent transactions.
• There is no support for transformations consisting of
multiple ALTER TABLE statements, there is no support
for UPDATE statements, and there is no facility to up-
date stored procedures.

6.4 Conclusion
PostgreSQL and MySQL both show mixed results for sin-

gle statement transformations, but pt-online-schema-change
shows good results. The pt-online-schema-change tool has
the limitation that only ALTER TABLE is supported, and there
is no facility to update stored procedures. Moreover, none
of the tested systems allow for correct complex transforma-
tions without blocking. PostgreSQL can perform complex
operations correctly, but blocks. MySQL can not perform
complex operations correctly, but allows transactions to con-
tinue executing. However, during online transformations
MySQL still blocks for some periods of time, which can ac-
cumulate to the same time as a blocking transformation in
PostgreSQL. Finally, while pt-online-schema-change works

well for single ALTER TABLE statements, it has no support
for other transformations, or complex transformations.

7. SOLUTION DIRECTION
Our survey of the state of the art and our experiments

show that current database systems can (partially) handle
simple schema transformations, but they can not handle
complex multi-relational transformations at all. The main
problem of existing techniques is that composition of non-
blocking schema transformations is not possible. We believe
that lazy schema transformations provide a promising solu-
tion to this problem, which we discuss below.

Lazy Schema Transformations. A lazy schema transfor-
mation is a schema transformation where data is transform-
ed after the transaction has been committed. A lazy schema
transformation can essentially be viewed as a query on the
existing database that returns a database in the new schema.
Instead of eagerly transforming data to the new schema, as
current database systems do, in lazy schema transforma-
tions, individual tuples or values are transformed upon re-
quest. Data can be materialized in the new schema as a
side effect of requesting data from the transformed schema,
which can be sped up by transforming data during idle time.

How this better meets the requirements. Lazy schema
transformations can be implemented to satisfy the ACID
properties. One method is to access data through a wrap-
per that transforms data to the new schema upon access [5].
Another method is to implement transformations as sus-
pended computations [11, 7]. Both methods provide the
same guarantees as performing a transformation guarded
by a lock, but have the advantage that data can be accessed
on demand. Furthermore, instead of journaling modified
values to guarantee durability, only the schema transforma-
tion definition has to be journaled. As a consequence, lazy
schema transformations can be committed before they are
executed, and their results are visible immediately. An in-
teresting benefit of lazy transformations is that they can
naturally be composed without causing blocking; the out-
put of one transformation can feed directly into the next
transformation. This allows complex transformations to be
defined in a natural way.

Challenges. Lazy transformations have already been stud-
ied for some time in object-oriented databases [2]. Moreover,
Neamtiu et al. recently investigated lazy schema transfor-
mations for relational databases [5], as discussed in Sec-
tion 4. However, complex relational schema transformations
are still a challenge. Some issues that still need to be solved
are the following:

• Not all transformations can be performed lazily with-
out blocking, for example, checking constraints, or cre-
ating a full index. Current database systems already
have solutions to these problems, however, integrating
these with lazy schema transformations without losing
the aspect of lazy composition is still a challenge.
• Some operations are inherently sequential, such as gen-
erating incremental values for surrogate keys, and can
not be executed lazily. We need techniques to perform
similar operations in a lazy setting.

12

• In non-lazy updates, indices can be build before a table
is in use. When transforming tables lazily, this is not
possible. An interesting challenge is to see whether we
can transform indices lazily.
• Compared to how database systems are traditionally
implemented, lazy schema transformations require a
significantly change. A big question is if this system
can match the performance and scalability of existing
techniques for traditional OLTP transactions.

Functional Databases. We are working on the implemen-
tation of a database based on a purely functional core, where
the implementation of lazy schema transformations is one of
our goals [13, 14]. Functional languages are not far from the
declarative query languages provided by current systems.
For instance, XQuery is a successful purely functional query
language for XML databases [12]. Functional languages pro-
vide many of the same opportunities for optimization as cur-
rently performed on relational queries, making them suitable
for use in the context of databases. Moreover, they also
provide lazy evaluation, and the ability to define arbitrary
functions in database queries.
In contrast to functional query languages, we are investi-

gating the use of functional languages to optimize the con-
currency of transactions that update a database. In our
system, a transaction is a function S → S′ × R that takes
the current state of the database S, and which produces
the next state of the database S′, together with an observ-
able result R. Based on early work by Trinder [11] and
Nikhil [7], we are investigating the use of lazy evaluation
to achieve concurrent execution of functional transactions,
which makes lazy schema transformations the natural solu-
tion to schema transformations. Additionally, we plan to
investigate rewriting of functional expressions to further op-
timize concurrency. Moreover, as our language allows arbi-
trary functions to be defined in transactions, we can commit
transactions that contain user defined logic. This allows
more types of transactions to be performed lazily than a
database system that provides a fixed set of functions.

8. CONCLUSION
Our main aim is to draw the attention of the database

community to the problem of online schema transforma-
tions. We show the extend of the problem by experimen-
tally investigating existing solutions. For our experiments,
we have identified an important subset of relational schema
transformations that we want to be able to perform online.
Moreover, we have defined general requirements for online
schema transformation mechanisms, where we assert that
schema changes should be performed transactionally and
with minimal interruption of concurrent transactions. We
have used the standard TPC-C benchmark, augmented with
schema transformations, to evaluate the behaviour of Post-
greSQL, MySQL and the pt-online-schema-change tool for
MySQL, which serve as representatives for the state of the
art in database system implementations. Our experiments
showed the following results:

• PostgreSQL can create indices without blocking con-
current transactions, and it can perform many oper-
ations instantaneously. However, for more complex
transformations, PostgreSQL blocks concurrent trans-
actions due to exclusive table locks.

• While MySQL supports online schema changes, these
can still show periods of blocking, which can be as long
as the blocking schema changes of PostgreSQL. More-
over, MySQL does not support transactional composi-
tion of schema transformations, which resulted in in-
correct transformations in our experiment.
• The pt-online-schema-change tool shows good results
for simple transformations, but it can only perform a
single ALTER TABLE statement transactionally.

A general conclusion is that composition of non-blocking
schema transformations is not possible in existing systems.
The literature describes a number of methods for non-block-
ing schema transformations, which also includes complex
transformations such as joining and splitting of tables. How-
ever, these techniques do not allow transactional compo-
sition of non-blocking schema transformations. Moreover,
many of the existing solutions also have the drawback that
there is a long delay between starting and committing a
schema transformation. We believe that lazy schema trans-
formations are a promising solution direction, as lazy trans-
formations can be composed in a natural way while main-
taining non-blocking behaviour. Working out the details
of this idea, and implementing a working system, is still a
challenge that we are working on.

9. REFERENCES
[1] P. P.-S. Chen. The Entity-relationship Model —

Toward a Unified View of Data. ACM Transactions on
Database Systems, pages 9–36, 1976.

[2] F. Ferrandina, T. Meyer, and R. Zicari. Implementing
Lazy Database Updates for an Object Database
System. In VLDB ’94, pages 261–272, 1994.

[3] H. Garcia-Molina and K. Salem. Sagas. In SIGMOD
’87, pages 249–259. ACM, 1987.

[4] J. Løland and S.-O. Hvasshovd. Online, Non-blocking
Relational Schema Changes. In Advances in Database
Technology - EDBT, pages 405–422. Springer, 2006.

[5] I. Neamtiu, J. Bardin, M. R. Uddin, D.-Y. Lin, and
P. Bhattacharya. Improving Cloud Availability with
On-the-fly Schema Updates. 2013.

[6] I. Neamtiu and T. Dumitras. Cloud software
upgrades: Challenges and opportunities. In MESOCA,
pages 1–10. IEEE, 2011.

[7] R. S. Nikhil. Functional Databases, Functional
Languages. In Data Types and Persistence, Topics in
Information Systems, pages 51–67. Springer, 1988.

[8] I. Rae, E. Rollins, J. Shute, S. Sodhi, and
R. Vingralek. Online, Asynchronous Schema Change
in F1. In VLDB ’13, pages 1045–1056, 2013.

[9] M. Ronström. On-Line Schema Update for a Telecom
Database. In ICDE, pages 329–338, 2000.

[10] G. H. Sockut and B. R. Iyer. Online Reorganization of
Databases. ACM Computing Surveys, pages
14:1–14:136, 2009.

[11] P. Trinder. A functional database. PhD thesis,
University of Oxford, 1989.

[12] P. Wadler. XQuery: A Typed Functional Language for
Querying XML. In Advanced Functional Programming,
LNCS, pages 188–212. Springer, 2003.

[13] L. Wevers. A persistent functional language for
concurrent transaction processing. Master’s thesis,
2012.

13

[14] L. Wevers. Persistent functional languages: toward
functional relational databases. In SIGMOD PhD
symposium, pages 21–25. ACM, 2014.

[15] L. Wevers, M. Hofstra, M. Tammens, M. Huisman,
and M. van Keulen. Towards Online and
Transactional Relational Schema Transformations.
Technical Report TR-CTIT-14-10, 2014.

10. APPENDIX: ALL RESULTS

14

-10:00 0:01 10:01
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(a) add-column-a

-10:00 0:01 10:01
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(b) add-column-b

-10:00 0:00 1:13 11:13
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(c) add-column-default-a

-10:00 0:00 1:15 11:15
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(d) add-column-default-b

-10:00 0:00 3:43 13:43
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(e) add-column-derived-a

-10:00 0:00 10:00
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(f) add-column-derived-b

-10:00 0:00 2:36 12:36
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(g) change-data

-10:00 0:02 10:02
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000
Tr

an
sa

ct
io

ns
 p

er
 m

in
ut

e

postgresql

(h) change-primary-a

-10:00 0:00 1:13 11:13
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(i) change-type-a

-10:00 0:00 4:48 14:48
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(j) change-type-b

-10:00 0:02 10:02
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(k) create-constraint-a

-10:00 0:09 10:09
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(l) create-index-a-nc

-10:00 0:00 14:55 24:55
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(m) create-index-a

-10:00 0:35 10:35
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(n) create-index-b-nc

-10:00 0:00 60:46 70:46
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(o) create-index-b

-10:00 0:00 10:00
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(p) create-relation

0:00 144:46
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(q) create-unique-a

-10:00 0:00 15:25 25:25
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(r) create-unique-b

-10:00 0:00 26:15 36:15
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(s) defactorize-boolean

-10:00 0:00 4:53 14:53
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(t) defactorize

-10:00 0:23 10:23
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(u) factorize-boolean
Figure 6: All PostgreSQL results, part 1 of 2.

15

-10:00 0:00 1:46 11:46
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(a) factorize

0:00 80:25
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(b) join-relation

-10:00 0:53 10:53
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(c) precompute-aggregate

-10:00 0:01 10:01
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(d) remove-column-a

-10:00 0:01 10:01
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(e) remove-column-b

-10:00 0:00 10:00
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(f) remove-constraint-a

-10:00 0:00 10:00
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(g) remove-index-a-nc

-10:00 0:01 10:01
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(h) remove-index-b-nc

-10:00 0:00 10:00
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(i) remove-relation-a

-10:00 0:01 10:01
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(j) remove-relation-b

-10:00 0:01 10:01
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(k) remove-unique-a

-10:00 0:01 10:01
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(l) remove-unique-b

-10:00 0:00 10:00
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(m) rename-column-a

-10:00 0:01 10:01
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(n) rename-column-b

-10:00 0:00 10:00
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(o) rename-relation-a

-10:00 0:00 10:00
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(p) rename-relation-b

-10:00 0:00 3:02 13:02
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

postgresql

(q) split-relation
Figure 7: All PostgreSQL results, part 2 of 2.

16

-10:00 0:00 6:51 16:51
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(a) add-column-a

-10:00 0:00 6:51 16:51
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(b) add-column-b

-10:00 0:00 6:55 16:55
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(c) add-column-default-a

-10:00 0:00 7:42 17:42
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(d) add-column-default-b

-10:00 0:00 12:28 22:28
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(e) add-column-derived-a

-10:00 0:00 12:21 22:21
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(f) add-column-derived-b

-10:00 0:00 1:27 11:27
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(g) change-cardinality-b

-10:00 0:55 10:55
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000
Tr

an
sa

ct
io

ns
 p

er
 m

in
ut

e

mysql

(h) change-cardinality-c

-10:00 0:00 2:53 12:53
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(i) change-data

-10:00 0:00 36:24 46:24
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(j) change-primary-a

-10:00 0:00 1:49 11:49
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(k) change-type-a

-10:00 0:00 24:44 34:44
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(l) change-type-b

-10:00 0:00 10:00
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(m) control

-10:00 0:00 2:33 12:33
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(n) create-index-a

-10:00 0:00 11:57 21:57
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(o) create-index-b

-10:00 0:00 10:00
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(p) create-relation

-10:00 0:00 15:47 25:47
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(q) create-unique-a

-10:00 0:00 16:11 26:11
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(r) create-unique-b

-10:00 0:55 10:55
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(s) defactorize-boolean

-10:00 0:00 14:18 24:18
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(t) defactorize
Figure 8: All MySQL results, part 1 of 2.

17

-10:00 0:00 1:06 11:06
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(a) factorize-boolean

-10:00 0:00 9:39 19:39
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(b) factorize

-10:00 0:00 7:58 17:58
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(c) join-relation

-10:00 0:00 2:33 12:33
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(d) precompute-aggregate

-10:00 0:00 22:07 32:07
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(e) remove-column-a

-10:00 0:00 26:19 36:19
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(f) remove-column-b

-10:00 0:00 10:00
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(g) remove-index-a

-10:00 0:00 10:00
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(h) remove-index-b

-10:00 0:00 10:00
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(i) remove-relation-a

-10:00 0:01 10:01
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(j) remove-relation-b

-10:00 0:01 10:01
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(k) remove-unique-a

-10:00 0:00 10:00
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(l) remove-unique-b

-10:00 0:00 10:00
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(m) rename-column-a

-10:00 0:00 10:00
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(n) rename-column-b

-10:00 0:00 10:00
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(o) rename-relation-a

-10:00 0:00 10:00
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(p) rename-relation-b

-10:00 0:00 2:23 12:23
Time in minutes since start

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

mysql

(q) split-relation
Figure 9: All MySQL results, part 2 of 2.

18

0:00 14:44
Time in minutes since start

500

1000

1500

2000

2500

3000

3500

4000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

pt-online-schema-change

(a) add-column-a

0:00 15:25
Time in minutes since start

500

1000

1500

2000

2500

3000

3500

4000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

pt-online-schema-change

(b) add-column-default-a

0:00 14:58
Time in minutes since start

500

1000

1500

2000

2500

3000

3500

4000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

pt-online-schema-change

(c) change-type-a

0:00 15:51
Time in minutes since start

500

1000

1500

2000

2500

3000

3500

4000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

pt-online-schema-change

(d) create-index-a

0:00 38:26
Time in minutes since start

500

1000

1500

2000

2500

3000

3500

4000
Tr

an
sa

ct
io

ns
 p

er
 m

in
ut

e
pt-online-schema-change

(e) create-index-b

0:00 132:32
Time in minutes since start

500

1000

1500

2000

2500

3000

3500

4000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

pt-online-schema-change

(f) create-unique-a

0:00 129:29
Time in minutes since start

500

1000

1500

2000

2500

3000

3500

4000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

pt-online-schema-change

(g) create-unique-b

0:00 14:54
Time in minutes since start

500

1000

1500

2000

2500

3000

3500

4000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

pt-online-schema-change

(h) remove-column-a

0:00 14:57
Time in minutes since start

500

1000

1500

2000

2500

3000

3500

4000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

pt-online-schema-change

(i) remove-index-a

0:00 15:52
Time in minutes since start

500

1000

1500

2000

2500

3000

3500

4000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

pt-online-schema-change

(j) remove-index-b

0:00 16:46
Time in minutes since start

500

1000

1500

2000

2500

3000

3500

4000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

pt-online-schema-change

(k) remove-unique-a

0:00
Time in minutes since start

500

1000

1500

2000

2500

3000

3500

4000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

pt-online-schema-change

(l) remove-unique-b

0:00 14:59
Time in minutes since start

500

1000

1500

2000

2500

3000

3500

4000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

pt-online-schema-change

(m) rename-column-a

0:00 15:07
Time in minutes since start

500

1000

1500

2000

2500

3000

3500

4000

Tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

pt-online-schema-change

(n) rename-column-b
Figure 10: All pt-online-schema-change results.

19

	Introduction
	Relational Transformations
	General Criteria
	State of the Art
	Experimental Setup
	Experimental Results
	PostgreSQL
	MySQL
	pt-online-schema-change
	Conclusion

	Solution Direction
	Conclusion
	References
	Appendix: All results

