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ABSTRACT
Functional languages provide new approaches to concur-
rency control, based on techniques such as lazy evaluation
and memoization. We have designed and implemented a
persistent functional language based on these ideas, which
we plan to use for the implementation of a relational data-
base system. With such a database system, we aim to show
that lazy evaluation can be used to perform online schema
transformations. Additionally, our persistent language al-
lows database programs to be written as stored transactions,
a mechanism similar to stored procedures. At a later stage,
we want to leverage existing verification tools for the au-
tomatic verification of postconditions over these functional
transactions.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages - Persistent
programming languages; H.2.4 [Database Management]:
Systems - Transaction processing; D.3.2 [Programming
Languages]: Language Classifications - Functional Lan-
guages

Keywords
Concurrency Control; Lazy Evaluation; Memoization; On-
line Schema Transformation

1. INTRODUCTION
Integrating programming languages with relational data-

base systems promises the construction of database pro-
grams in a single environment. However, despite decades
of work on developing such persistent languages, they have
not been able to gain much traction. Most programming lan-
guages do not integrate well with the relational model due
to different data models and semantic foundations. More-
over, performing high level optimizations on imperative pro-
grams is difficult. In contrast to most early work in this area
where imperative languages are used, we explore the use of
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functional languages as the basis for a persistent language.
Functional languages are already used for querying XML
databases [13] because of the possibility to define high-level
optimizations by rewriting queries, and because of the pos-
sibility to parallelize query execution without explicit user
guidance. However, the use of functional languages for the
updating of databases has gone largely unexplored.

In functional programming languages, computation is ba-
sed on the evaluation of expressions. Functions in a pure
functional language have no side-effects and are determinis-
tic, thus always producing the same output given the same
input. This allows the output of a function to be memoized
to avoid expensive recomputation. Moreover, purity implies
that every evaluation order that terminates leads to the same
value. For example, this allows lazy evaluation and parallel
evaluation of expressions. To facilitate efficient execution,
functional programs are commonly represented as graphs.
This allows efficient copying of state by sharing common
subgraphs, and avoids duplication of suspended computa-
tions in copied states. A modern functional programming
language that implements most of these ideas is Haskell [9].

Functional languages allow us to optimize transaction ex-
ecution in ways not possible in current database systems. In
particular, functional languages naturally provide the ability
to perform operations on databases lazily [12]. Moreover, if
a transaction has to be retried, we can use memoization to
reuse results of work done in the previous attempt [15]. Ad-
ditionally, reasoning about functional programs is generally
easier than reasoning over imperative programs due to the
absence of side-effects, providing a strong basis for the au-
tomatic verification and optimization of database programs.

Our main goal is to develop a persistent functional lan-
guage, and implement a relational database system inside
this language. To use functional languages for database sys-
tems, Trinder proposes modelling of database updates as
functions that take as input the current version of the da-
tabase, and which return a new version of the database, to-
gether with an observable result [12]. Trinder shows that
these functional transactions can be executed in parallel
through lazy evaluation, while trivially satisfying the ACID
properties. However, he also shows that there are limitations
to this model. To mitigate this, we propose the use of op-
timistic execution and memoization, and show how to inte-
grate this with the model proposed by Trinder. In Section 2
we review the work by Trinder and discuss our proposal.

While Trinder’s model provides the basis for functional
transaction processing, it does not provide a suitable pro-
gramming model for persistent languages. To solve this
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problem, Nikhil proposed that the state consists of a set
of value bindings, where transactions can update multiple
bindings [8]. In Section 3, we review Nikhil’s model, and
describe a programming language and runtime system that
we are developing based on this model. In contrast to early
persistent functional languages, a major goal of our language
is to allow parallel execution of transactions.

Our next goal is the development of a relational database
system in our language. We are currently at an early stage in
this work. A particular challenge is how to denote database
updates effectively. We discuss these issues in Section 4. To
show the applicability of our system, we want to investigate
the use of lazy evaluation to allow online schema transfor-
mations. We discuss some initial ideas on how we plan to
do this in Section 5. As a further goal we want to leverage
existing tools for program verification to the new setting of
persistent functional languages. We describe our plans for
this in Section 6.

2. FUNCTIONAL TRANSACTION
PROCESSING

In contrast to existing work which only uses functional
languages to query databases, we want to use functional
languages to perform updates on databases. Central to this
is the ability to perform transactions in order to guarantee
the ACID properties. Trinder has shown how to do transac-
tion processing in a functional language [12], which we will
now briefly review.

In Trinder’s model, transactions are executed by a trans-
action manager, of which a simple version is given by the
following recursive function:

tm : S → [ S → S × R] → [R]
tm s ( tx : txs ) =

let ( ns , r ) = tx ( s ) in r : (tm ns txs )

This function takes an initial state s of type S and a
stream of transaction functions of type S → S × R. The
initial state is passed to the first transaction function tx as
input, which then produces as output the next state ns of
type S and an observable result r of type R. The transaction
manager then recursively calls itself with the next state and
the tail of the list of transaction functions txs to process
the remainder of the transactions. As a result, this function
produces a list of transaction results. To implement data-
base systems based on this model, Trinder suggest the use
of bulk data types to model the state. The type S of the
state is conceptually similar to a database schema.

In this model, the sequential execution of transactions
guarantees serializability. However, a limitation of Trinder’s
model is that transaction functions are required to be to-
tal, i.e., they must always produce a next state. To abort
a transaction, a transaction can return the original state.
Consistency of the state can be guaranteed by composing a
transaction function with a function that validates the result
state, and which aborts if the validation fails.

This simple model is not concerned with communication
to the outside world, or persistence. In fact, both can be
added around the transaction manager function. First, to
handle concurrent requests from the outside world, trans-
actions can be serialized before handing them over to the
transaction manager. Second, the functional model greatly
simplifies the implementation of durable persistence com-
pared with traditional database systems. To be able to re-

cover a database from an inconsistent state as a result of
system failure, traditional database systems need to make
a copy of every value being mutated before mutating them.
In contrast, to guarantee durability in Trinder’s model, a
transaction function can be journaled before it is executed.
If the system crashes, the journal can be replayed to restore
the state. To avoid the journal growing too large, and to
speed up the process of restoring the state, a snapshot of
the state can be created regularly. This approach has been
implemented in the ACID-state library [2] for Haskell.

2.1 Lazy Transaction Execution
So far we have not discussed parallel execution of transac-

tions, which is of prime importance for any realistic database
system. In fact, the model discussed so far already allows
for parallel execution of transactions, as shown by Trinder.

Instead of immediately computing the next state, a trans-
action can return a closure that computes the next state.
This means that updates to the state can execute in con-
stant time by immediately constructing a closure, and mov-
ing the burden of the computation to readers of the state.
As the closure that computes the state is pure, readers can
work on computing the state in parallel without interfering
with each other. This mechanism is effectively implemented
by lazy evaluation in functional programming languages.

If all readers are working on computing the same closure,
parallel computation time is wasted, as they will all get the
same result. In practice, parallel readers can avoid work-
ing on the same task using a dynamic task scheduler such as
work-stealing [4], which is commonly used to implement par-
allel evaluation in functional languages. To introduce more
concurrency, a state computation can recursively construct
more closures in a divide-and-conquer style, allowing read-
ers to work on different tasks. This is trivial to implement
over recursive data structures such as trees.

An interesting property of this strategy is that readers
will only compute those parts of the state that they ac-
tually need. Any updates on parts of the state that are
not immediately needed are postponed. This means that a
bulk update, such as mapping a function over a tree, does
not have to block readers from accessing the state. This
can for example be used to perform non-blocking schema
transformations, as we discuss in Section 5. However, a
limitation of this approach is that it can not parallelize all
types of transactions. In particular, this method is limited
by data dependencies between transactions. A data depen-
dency is essentially similar to a lock in traditional database
systems, as a transaction can not proceed until its immedi-
ate dependencies have been computed. However, in contrast
to locking, data dependencies can be resolved incrementally
by performing the computations. For this strategy to work
well, recursive functions that compute the state should re-
turn parts of the state before recursing, so that subsequent
transactions can proceed.

2.2 Optimistic Transaction Execution
In this section we propose an alternative strategy to par-

allelize the execution of functional transactions. The basic
idea is to execute functional transactions optimistically, and
to use memoization to reduce the cost of retries. Memoiza-
tion has already been investigated in the context of software
transactional memory [15]. We show that the same ideas
can be used to parallelize transaction execution in an opti-

22



mistic version of the functional model, and we show how to
integrate this strategy with lazy evaluation.

In our approach we assume that there is a mutable pointer
that points to the current state. When a transaction wants
to execute, it gets the pointer to the current state, and eval-
uates its transaction function over this state. When evalua-
tion completes and the state pointer still points to the state
that it initially got, the transaction commits by updating the
state pointer to the state that it has computed. If the state
pointer changed while evaluating the state, this means that
some other transaction changed the state. In this case the
transaction has to retry its execution using this new state.

In its basic form, parallel execution in this approach does
not lead to any useful work, because only one transaction
is able to commit, while all other transactions will fail and
have to retry with the new state. However, if we (partially)
memoize results from the previous execution attempts, this
work may not be wasted, and we get useful parallelism.

This approach can be combined with the lazy evaluation
approach in a natural way. A transaction can simply com-
mit an unevaluated state to fall back to the lazy evaluation
approach. Additionally, a transaction can selectively evalu-
ate only a part of its result state, and partially rely on lazy
evaluation for its execution.

An advantage of optimistic execution is that updates do
not block readers of the state. This allows transactions to
perform expensive computations such as computing aggre-
gates or checking of constraints. Even for small transactions
this approach can be useful if we consider that I/O latency
may stall the execution of a transaction. A disadvantage
of this approach is that a transaction may never be able to
commit because the state keeps changing due to concurrent
transactions. This is a subject that we still want to investi-
gate. One idea is to first execute a transaction optimistically
to prepare as much work as possible, and if it fails to com-
mit, we execute it lazily while reusing the results obtained
in the first attempt.

3. PERSISTENT FUNCTIONAL
LANGUAGES

While Trinder’s model provides the basis for functional
transaction processing, it does not provide a suitable pro-
gramming model for persistent languages. As the basis for
our persistent functional language, we build on the model as
proposed by Nikhil [8].

In this model, the state is a set of bindings that map names
to expressions in a functional language. These expressions
can be data, as well as functions that can be used to oper-
ate on that data. Given the previous state, a transaction
can construct the next state by atomically adding bindings,
updating bindings and removing bindings from the current
state. Additionally, a transaction can return an observable
result by evaluating an expression in the context of the cur-
rent state.

3.1 Language
We are developing a language based on Haskell for the def-

inition of functional transactions following Nikhil’s model.
The idea is that a user can write a transaction in this lan-
guage, and send it to the runtime system for it to be exe-
cuted. Our language has a few differences compared with
Haskell, which we describe in this section. We demonstrate

the features of our language using the following example
transaction:

length [ ] = 0
length ( x : xs ) = 1 + length xs
names ’ = ”bob” : names
r e s u l t = length names ’

In this transaction, a function length is defined that is
local to the transaction. Next, names in the next state is
assigned the value of the string "bob" prepended to the list
names from the previous state, where the prepend function
‘:’ is used as defined in the previous state. Finally, the
transaction queries the number of names in the resulting
state, using the function length that it has just defined.
Note that all binding operations are applied simultaneously,
the order of bindings does not matter.

In our language, updating a bindings looks similar to
defining a function in Haskell. Writing x’ = 5 specifies that
x has the value 5 in the next state. Removing a binding b

from the state is done by writing remove b. Additionally,
bindings that are local to the transaction may be defined.
These bindings only exist while the transaction is executing,
and are only visible by the transaction defining them. These
bindings are written without a prime, e.g. x = 5. There is
one special local binding, named result which specifies the
observable result of the transaction.

In contrast to Haskell, our language distinguishes between
variables that refer to the previous state, the next state, and
local values. Syntactically, we distinguish these by marking
variables that refer to the next state with a prime, e.g. x’,
while variables that refer to values in the previous state and
local values are written without a prime.

Our language also features stored transactions, which are
similar to stored procedures. A stored transaction can be
parameterized, and consists of a set of binding operations
that can refer to the arguments passed to the stored transac-
tion. For example, the following transaction defines a stored
transaction that adds a name to a list of names and incre-
ments a counter:

t r an sa c t i on add name (name) {
names ’ = name : names
count ’ = count + 1

}

At the moment this mechanism is still very basic. A stored
transaction is essentially a function over multiple bindings.
In the future we want to investigate if we can make stored
transactions composable.

3.2 Runtime System
We have implemented a basic prototype implementation

of our persistent language in Java. The system accepts
transactions written in our language through an HTTP in-
terface, and returns the observable result of the transaction.
Transactions are executed by binding variables to their cor-
responding values, and then updating the bindings in the
state as specified by the transaction. The implementation
features a parallel graph reducer that allows lazy evaluation
of bindings. Currently, our system implements persistence
and durability through journaling and snapshotting as de-
scribed in Section 2. To avoid the state filling up with too
many closures, the system forces the evaluation of all bind-
ings updated by a transaction after it has been executed. For
more details about the runtime system, we refer the reader
to the Master’s thesis by the author [14].
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3.3 Typing
We are currently in the process of implementing typing

for our language. To facilitate this, the binding model is
extended with a type for each binding. Additionally, our
language allows type definitions to be stored in the state,
similar to the way bindings are defined. Like regular vari-
ables, type variables can refer to types in the previous state,
the next state, as well as local types. Data types can be
redefined by requiring that the old definition is not used
anymore, i.e., after executing the transaction, no binding in
the state has a type that refers to the old definition. This
may require updating all values of the old type to the new
type, which currently has to be done by the user. We plan
to add a facility to the language to do this automatically for
the user given a transformation function. The system as just
described is independent of the type system used. Currently,
we are using the Hindley-Milner type system with type in-
ference [6], which is a standard type system in functional
languages.

3.4 Evaluation Strategies
Currently, our persistent language evaluates all bindings

lazily. We also want to allow optimistic execution of trans-
actions, as described in Section 2.2. Our idea is to allow
forcing the evaluation of certain (sub-)expressions before up-
dating bindings in the state. If at commit time the data on
which the sub-expression has been computed has changed,
the transaction has to be retried. This approach allows both
lazy evaluation and optimistic execution to be used within
a single transaction.

Additionally, we want to investigate evaluation strategies
that allow weaker consistency guarantees to improve per-
formance. One idea is to split a transaction into multiple
parts such that all parts are executed atomically, but where
consistency is only guaranteed for the individual parts. This
could for example be used to allow a transaction to efficiently
update a balanced tree data structure, where the first part
of the transaction updates the values in the tree, while the
second part of the transaction balances the tree.

4. FUNCTIONAL RELATIONAL
DATABASES

We now discuss modelling of relational databases in our
persistent functional language. In particular, we want to in-
vestigate how to represent and efficiently update functional
relations. This work is currently in a very early stage, but
we present some of the issues in this section.

A straightforward method to encode relations is to de-
fine a record type, and define a relation as a set of such
records. However, for efficient searching we also need in-
dices. One approach to allow indexing is by providing each
record with a unique identifier, and by defining indices as
sorted (multi-)maps from the indexed value to the record
identifiers that correspond to this value. For example, to
construct a relation of users that have a username, pass-
word and age, with indices on the name and age, we could
define the following transaction:

data User ’ = User ’ { name : : String ,
password : : String , age : : Int }

users ’ = empty : : Map Int User ’
users by name ’ = empty : : Map String Int
user s by age ’ = empty : : MultiMap Int Int

A problem with this approach is that updates quickly be-
come unwieldy. If we want to update records in a rela-
tion, we have to construct a new relation with the updated
records, as well as new indices that reflect the updates. This
is shown by the following example transaction where we up-
date the age for the user "bob":

u s e r i d = get ”bob ” users by name
o l d u s e r = get u s e r i d u s e r s
new user =

o ld u s e r { age = ( age o l d u s e r ) + 1 }
users ’ = put u s e r i d new user u s e r s
user s by age ’ =

put ( age new user , u s e r i d ) $
remove ( age o ld use r , u s e r i d ) u s e r s by age

Compared with the equivalent SQL update UPDATE users

SET age = age + 1 WHERE name = ’bob’ this approach is
too complicated. However, note that the main problem here
is one of notation, and not neccesarily the efficiency of the
solution. One limitation of this approach is that updates to
indices have to be specified explicitly. Ideally, we would like
the system to figure out which indices need to be updated,
as is done in existing relational database systems. This is
still an area that has not been thoroughly investigated, and
to the best of our knowledge there is no academic work in
this area. However, there is existing work in the form of
two libraries for Haskell, the IxSet [2] and HiggsSet library.
In their solution they combine indices and data inside one
data structure to ensure consistency between indices and the
data. Moreover, they use lenses [7] to avoid put . modify

. get constructs, as seen in the example above, and instead
allow updates on fields in a more direct way.

In addition to exploring existing work, we want to investi-
gate other solutions as well. In contrast to a solution based
on libraries, we also have the ability to adapt our language to
cater specifically for updates of bindings. One preliminary
idea is to create a language around bindings that allows op-
erations on sets of bindings, and allow these operations to
be composed as functions.

5. ONLINE SCHEMA
TRANSFORMATIONS

One of our goals is to allow schema transformations to
be performed while a database system is in use. The need
for online schema transformations is evident by the research
done at Google to solve this problem in the F1 database
[11]. For traditional database systems, there already ex-
ist tools such as pt-online-schema-change [1]. However,
these tools are limited to relatively simple schema changes,
and are complicated to use. In the end, these solutions at-
tempt to provide transactional behaviour, but have to do
so in a complicated way. Ideally, a DBMS should be able
to provide the capability to perform online schema transfor-
mations transactionally. In contrast to most previous work,
we want to investigate lazy schema transformations. In con-
strast to the approaches used in F1 and pt-online-schema-

change, a benefit of lazy schema transformations is that, for
many practical cases, a schema transformations can take ef-
fect immediately.

Lazy schema transformations have already been studied
in object-oriented databases [5], but not yet in a functional
database setting. Our idea is to perform schema changes by
lazily constructing a new version of the database with the
new schema from the old database. Many kinds of schema
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changes can be encoded in this model, such as changing
the columns of a table, or splitting and joining of tables.
One complication with this model is that entries in the new
schema may get a new identifier, for example when two ta-
bles are joined. In this case, foreign keys to this table need
to be updated accordingly. We expect that this can also be
done lazily. Another issue is the creation of indices on the
new relation. Preferably we want to copy indices from the
source relation if these are still valid. If a transformation
on the indexed values preserves the ordering of the values
then it is also possible to transform the source index lazily.
We expect that on a technical level it is possible to perform
most schema transformations online. However, as our goal
is to be able to perform schema transformations in a simple
way, we want to investigate methods to denote functional
schema transformations in a simple way.

We plan to evaluate our approach by adapting the in-
dustry standard TPC-C benchmark [3] to include online
schema changes. The TPC-C benchmark specifies a data-
base for a warehouse that is constantly being queried and up-
dated through five different types of transactions. We extend
TPC-C by performing different kinds of schema changes,
while running the original transaction load. We use this
benchmark to investigate whether our approach can actu-
ally perform these schema changes without blocking the on-
line transactions performed by TPC-C. Moreover, we want
to measure the impact of schema changes on the perfor-
mance of the system. We are currently in the process of
implementing an initial version of this benchmark to evalu-
ate pt-online-schema-change.

6. VERIFYING DATABASE SOFTWARE
The last topic that we plan to investigate is the formal

verification of programs written in our persistent functional
language. In current database systems it is difficult to en-
sure the correctness of database programs. However, a lot
of work has already been done on verification in traditional
programming languages. Verification tools have improved a
lot over the past few years, and are able to prove more and
more cases automatically. Instead of developing new tech-
niques for verification, we want to leverage existing verifica-
tion tools and apply them in the new setting of persistent
functional languages. In particular, we want to investigate
the automatic verification of postconditions on stored trans-
actions. This can be used to verify that stored transactions
respect invariants over the state, without the need for run-
time checks [10]. Additionally, we can also use this to verify
the functional behaviour of transactions, e.g., showing that
a result is not always empty.

7. CONCLUSIONS
Our main goal is the development of a relational database

in a persistent functional language, as to integrate a pro-
gramming language and a database system into a single en-
vironment. We have seen that functional languages provide
new ways of executing transactions in parallel through lazy
evaluation and memoization. To apply these techniques, we
are developing a persistent functional language that pro-
vides a programming model for the specification of func-
tional transactions. Currently, we are extending this lan-
guage with a type system and mechanisms to allow the spec-
ification of evaluation strategies for functional transactions.

The next step in our project is the modelling of a rela-
tional database in our language. The main issue for now
seems not to be technical, but notational. While possible,
specifying relational database updates in a persistent func-
tional language is currently much more difficult than spec-
ifying an update in SQL. To evaluate our system, we want
to perform online schema transformations to showcase the
applications of functional transaction processing. Further
down the road, we plan to leverage existing program verifi-
cation tools to verify functional database applications.
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